
Runtime Verification Based on
Executable Models: On-the-Fly

Matching of Timed Traces

Mikhail Chupilko,

Alexander Kamkin

Outline

• Hardware models

• Runtime verification

• Elements of formalization

• Conformance relation

• Conclusion

2/28

Hardware models

• They are developed in Hardware Description
Languages, like Verilog or VHDL

• The result of development is the program
being executed in HDL simulator

• The common approach for verification of
hardware models is testing of HDL programs

• To automatize testing is possible by means of
executable models (e.g. in C++)

3/28

HDL programs

input S;
output R1, R2;
void design() {
 while(true) {
 wait(S);
 delay(6);
 R1 = 1;
 delay(1);
 R1 = 0;
 R2 = 1;
 delay(1);
 R2 = 0;
 }
}

CLK

6 cycles

S
R1
R2

Parallel assignments

4/28

Hardware model behavior

5/28

Reference model-based test oracle

HDL

Test oracle

Reaction
comparators

Reference model

Reaction arbiters

In
pu

t i
nt

er
fa

ce
 a

da
pt

er
s

O
utput interface adapters

Stimuli

HDL-model
reactions

Reference model
reactions

6/28

Behavior correctness checking

Time restrictions

Functional properties

• Set of reactions is correct

• Each reaction is correct

• Reaction order is correct

• Delays between reactions are correct

7/28

Cycle-accurate checking

R1

Reactions of HDL-model

Reference model reactions

send(R1);

send(R2);

delay(3)

R1

R2

 ✕ Comparison

R2

 ✕

3 cycles

8/28

Ambiguity in reaction order

S
R2 R1

Execution of HDL-model

recv(in_iface, S);

Execution of reference model

send(out_iface, R1);

send(out_iface, R2);

...

...
Error: R2 ≠ R1

Reverse order

Reaction order

R1 R2 Allowed: R2 ∈ Order

9/28

Arbitration of reactions

• Reaction arbiter finds a reaction
corresponding to the reference model one

• Behavior checking depends on both reference
model and on arbitration

• Reaction arbiters encapsulate parts of test
oracle functionality aimed at reaction order
checking

10/28

Types of reaction arbiters

• Deterministic model-based arbiter

 arbiter: 2Reaction → Reaction ∪ {fail}

• Adaptive arbiter

 arbiter: 2Reaction × Reaction → Reaction ∪ {fail}

• Two-level arbiter

 arbiter(reactions) ≡ arbiter2(arbiter1(reactions), reaction)

– Non-deterministic arbiter

– Adaptive arbiter

11/28

Deterministic arbiter

R1

HDL-model reactions

Reference model reactions

send(R1);

send(R2);

... R1 R2

Reaction
arbiter

R1

R2

FIFO

 ✕ Comparison

S R

Known order

12/28

Adaptive arbiter

R1

HDL-model reactions

Reference model reactions

send(R1);

send(R2);

...

R1

R2 Reaction
arbiter

R1

R2

Get(R1)

Comparison

S R

Unknown order

Hint  ✕
13/28

Two-level arbiter

R1

HDL-model reactions

Reference model reactions

send(R1);

send(R2);

...

R1

R2
Arbiter

#1

R1

R2

 ✕

Get(R1)

Comparison

S R

Partially known order

Arbiter
#2

Hint

Candidates

14/28

Timed word (Alur & Dill, 1994)

Σ – alphabet of events
T – time domain (R≥0 or N)

w = (a0, t0)(a1, t1), … ∈ (Σ × T)ω(*)

• ∀i . ti < ti+1 (ti ≤ ti+1) – monotonicity

• ∀T ∃i . ti > T – progress (if |w| = ∞)

15/28

Mazurkiewicz trace (1977)

Σ – alphabet of events
I ⊂ Σ×Σ – relation of independence

Equivalent: u ≡ v ⇔ u is derived from v by means of
reordering of closest independence events

Trace is a class of equivalence of event chains in
respect to equivalent relation ≡

16/28

Mazurkiewicz trace (1977) - Example

Σ = { a,b,c,d }
I = { (a,b), (c,d) + symmetry}

[ab]≡ = { ab, ba }

[bc]≡ = { bc }

[abcd]≡ = { abcd, bacd, abdc, badc }

17/28

Partially ordered set – Pratt (1982)

Σ – alphabet of events

Pomset is tuple 〈V, ≤, λ〉

• V – set of vertexes

• ≤ ⊂ V×V – partial set

• λ: V → Σ – labeling function

18/28

Partially ordered set – Pratt (1982)
Examples

a a b

c

c

db

a

b

a

b

c

d

a

19/28

Timed trace – Chieu & Hung (2012)

Σ – alphabet of events, T – time domain

Timed trace – 〈V, ≤, λ, θ [, δ]〉

• V – set of vertexes

• ≤ ⊂ V×V – partial order

• λ: V → Σ – labeling function

• θ: V → T – time of event

• δ: V → ∆T – allowed interval

20/28

Timed trace – Chieu & Hung (2012)
Examples

• { abcd, bacd, abdc, badc }
• { abcd, bacd } – time restrictions

a b

c d

[0, 0] [0, 1]

[3, 4][0, 2]

21/28

Behavior of specification and
implementation

Implementation behavior
〈VI, ∅, λI, θI〉

Specification behavior
〈VS, ≤, λS, θS, δS〉

Allowed time interval
δS(x) = [θS(x)-∆t(x), θS(x)+∆t(x)]

Correspondence of events

match(x, y) = (λI(y) = λS(x)) & (θI(y) ∈ δS(x))

22/28

Conformance relation

I ~ S ⇔ ∀t ∈T .

∃M ⊆ { (x, y)∈pastS(t) × pastI(t) | match(x, y) }

• M – one-to-one relation

• ∀x∈pastS(t-∆t) ∃y∈pastI(t) . (x, y)∈M

• ∀y∈pastI(t-∆t) ∃x∈pastS(t) . (x, y)∈M

• ∀(x, y), (x’, y’) ∈M . x ≤ x’ ⇒ θ(y) ≤ θ(y’)

23/28

Reaction arbiters

24/28

Conformance relation checking

25/28

C++TESK Testing ToolKit
Web: http://forge.ispras.ru/projects/cpptesk-toolkit

E-mail: cpptesk-support@ispras.ru

26/28

Conclusion

• Based on the theory of traces and partially
ordered multisets method of on-the-fly
analysis of hardware systems has been
developed

• The method has been implemented in
C++TESK Testing ToolKit and has been
successfully used in a number of projects

• Future research is connected with failure
diagnostics: giving hints to localization of bugs

27/28

THANK YOU

• Any questions?

28/28

	Runtime Verification Based on Executable Models: On-the-Fly Matching of Timed Traces
	Outline
	Hardware models
	HDL programs
	Hardware model behavior
	Reference model-based test oracle
	Behavior correctness checking
	Cycle-accurate checking
	Ambiguity in reaction order
	Arbitration of reactions
	Types of reaction arbiters
	Deterministic arbiter
	Adaptive arbiter
	Two-level arbiter
	Timed word (Alur & Dill, 1994)
	Mazurkiewicz trace (1977)
	Mazurkiewicz trace (1977) - Example
	Partially ordered set – Pratt (1982)
	Partially ordered set – Pratt (1982)�Examples
	Timed trace – Chieu & Hung (2012)
	Timed trace – Chieu & Hung (2012)�Examples
	Behavior of specification and implementation
	Conformance relation
	Reaction arbiters
	Conformance relation checking
	C++TESK Testing ToolKit
	Conclusion
	THANK YOU

