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® Model-based testing



Model-Based lesting

® Model-based testing (MBT) as defined
in Wikipedia

e “Model-based testing is
application of Model based design for
designing and optionally also executing
artefacts to perform software testing.
Models can be used to represent the
desired behaviour of a System Under
Test (SUT), or to represent testing
strategies and a test environment.”



http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing

Model-Based lesting

® Model-based testing (MBT) as defined
in Wikipedia

~

We would say:
system or software
testing

¢ “Model-based testing
application of Model based
designing and optio SO
executing ar ts to perform
software testing. Models can be used
to represent the desired behaviour of
a System Under Test (SUT), or to
represent testing strategies and a test

environment.”

J
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Model-Based lesting

Let’s analyse this definition

® “Apply model-based design™: use
modelling formalism to specify any test-
related information

® “Models ...represent desired behaviour of ...
SUT™: Just specify the desired capabilities
of the SUT

® . ..oralternatively ...



Model-Based lesting

® “Models ... represent testing strategies and
a test environment’”:

® |t is explicitly modelled how test cases and
associated test data should be produced and

® how these should interact with the SUT
® Here MBT helps to

® represent test cases in a concise and intuitive
way

® transform test cases and data into executable
test procedures



Our MBT Approach

Instead of writing test procedures,

develop a test model specifying expected
behaviour of SUT => the first MBT variant

use generator to identify “relevant” test
cases from the model and calculate concrete

test data
generate test procedures fully automatic

perform tracing requirements < test
cases in a fully automatic way



® A reference tool



Reference Tool RI-Tester

® Supports all test levels — from unit to
system integration testing

® Software tests and hardware-in-the-
loop tests

® [est projects may combine hand-
written test procedures with
automatically generated procedures

=» The tool capabilities are presented here to stimulate
benchmarking activities
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Modelling Tool

RT-Tester Model Parser

/Parser front Ends
® transform model

format into abstract
syntax ftree

Representation IMR

representations in XMI
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Modelling Tool

Test Case Generator

[

RT-Tester Model Parser Model Transformers
<—@IMR (AST) Z Transition Relation
Generator

Concrete Interpreter

Model Transformers provide ——
alternative AST representations @
® Cone of influence reduction

® Test oracles
® Equivalence class abstraction

\: <
( - y = . v

est Procedutre
Generator

Abstract Interpreter

RT-Tester Test
Procedure



Modelling Tool

RT-Tester Model Parser Model Transformers

Test Case Generator RT-Tester IMR (AST) Trané:r?:r:\tiitlon

< Test Case Generator
1 @ identifies “relevant” test cases
® uses ASTs as identification basis

® exploits traceability information from
<* requirements to model elements
® encodes test case goals as propositions

Cond

Abst G(S()vSla'"?SC)

—_————




Modelling Tool

v
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Madallivne Taal

" SMT-Solver
@ calculates solution of test goals which are
compatible the transition relation N

J(s0) A /\ D(si, $i+1) N G(S05- - -, Snt1)
i=0

—

SMT-Solver SONOLAR

Model State Concrete Test>f
Abstractions C a n h a n d Ie

Test Procedure BOOleanl In.l-egerl
Generator
Float, Array data

Concrete Interpreter

Abstract Interpreter RT-Tester Test




(Concrefe interpreter

@ executes the model from current pre-state
with the input data calculated by the
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Modelling Tool

(Abstract interpreter

® speeds up SMT-solver by

® calculating minimal number of steps
required for finding solutions

@ restricting the ranges of inputs and
other model variables in traces leading
to a solution of

J(s0) A /\ D (5, 8i+1) N G(S0, - -5 Snt1)

1=0
\_

y =

Test Procedure
Generator

Co\ 'rete Interpreter

\ 4
Abstract Interpreter RT-Tester Test
Procedure




Modelling Tool

(T est Procedure Generator

|@is a compile back-end for transforming
test case solutions to executable test
procedures

@ provides different compile back-ends for
RT-Tester Real-Time Test Language,

PROVEtech:TA, and TTCN-3

\_
Model State
) loncrete Test Data
Abstractions
/ \

Test Procedure
Generator

\ 4
Abstract Interpreter RT-Tester Test
Procedure

Concrete Interpreter




® Modelling aspects



Formalisms

® The controversy about modelling
formalisms is unlikely to come to an
end in the foreseeable future

® Domain-specific language methodology
even suggests that productivity and
quality are improved, if formalisms
optimised for their application domains
are used



Formalisms

Modelling formalisms supported by RI-
Tester

® Timed CSP

® CML — COMPASS Modelling Language
® Timed Moore Automata

o UML

® SysML



Formalisms

o UML

® Composite structure diagrams
® |nterfaces
® Classes and operations

® State machines with timers



Formalisms

® SysML

Block definition diagrams
Internal block diagrams
ltem flows

State machines with timers
Operations

Requirements

<<satisfy>> relationship between
requirements and model elements



Case Study With SysML

® Simplified version of the turn
indication and emergency flashing
function in Daimler vehicles

® Full model available under

http://www.mbt-benchmarks.org
—> Benchmarks

= Turn Indicator Model Rev. 1.4


http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html

Turn Indication Function

Requirement Description

Flashing requires more than 80% of

REQ-00| e
nominal input voltage

REQ-002 Flashing |s.performed with 340ms/320ms
on-off periods

REQ-003 Turn indication lever switched to | results

in left-hand side flashing




Test Model

bdd bdd_SYSTEM|




SUT and TE

ibd [block] SYSTEMJ

gltemF lows

E merFlash: bool
44—

altemFlows
TumindLyr : bool

gltemFlows
Voltage : int
h

gitem Flows
FlashRight : bool

gltem Flows
FlashLeft : bool

—




Turn Indication Controller

ibd [block] SystemUnderTestJ

«ltemFlow»

Left : bool
—>

—

«ItemFlow»

Right : bool
—>




Turn Indication Controller

[FLASH_CTRLJ

o

!

" EMER OFF S

EmerFlashyy  |EMER_ON : EMER_ON

J

do : doEmerOfH OO
[hot EmerFlash]/




(EMER_ONJ

[(TurnindLw <> 0) and

((TurnindLwr = 1) <> Left1 or
(TurnindLwr = 2) <> Right1)]/

[ EMER_ACTIVE

Entry/Left .= true;
Left1 := (TumIndLwr = 1);
Right := true;

@ighﬂ = (TurnindLvr = 2)

A\

-
-
¢ ~ -~ ~  «satisfy»
-

«requirement»

REQ-005 Emergency flashing on
overrides left/right flashing

-
-

[(Left1 or Right1) and
(TurnindLwr = 0)]/

[TurnindLvr = 0}/

oo >

«satisfy»

«requirement»
REQ-007 Resume emergency flashing

V

" TURN_IND_OVERRIDE |

do : doTurnIindOverride
Entry/Left := (TurnindLwr = 1);

\Right = (TurnindLwr = 2); )
]
v «satisfy»

«requirement»

REQ-006 Left-/right flashing overrides emergency flashing




(OUTPUT_CTRLJ

FlashCtr :=0;
Left1 = Left;
Right1 := Right

[(Left or Right) and (Voltage > 80)J)/

( Idle )

LEntry/FlashLeft = falsej

FlashRight := false

N\

V

FLASHING : FLASHING

OO

[( Left <> Left1 or Right <> Right1
FlashCtr :=0;

Left1 = Left;

Right1 = Right

[( not (Left or Right) and

((FlashCtr >= 3 ) or ( Left1 and Right1 ) ) ) or

(Voltage <= 80))

)y and ( Left or Right )]/




Turn Indication Controller

(FLASHINGJ A

d[ after( 340ms )/

ON r T~
/ 4 B
Entry/FlashLeft := Left1; / OFF
FlashRight := Right1; Il Entry/FlashCtr := FlashCtr + 1,
% , . FlashLeft := false;
,' after( 320ms )/ l flashRight = false; )

/ FlashLeft := Left1;

. - T =R
, FlashRight := Right1; «satisfy»
/

v v
«requirement»
REQ-002 Flashing with 340ms/320ms on-off periods




Model Semantics

® Based on Kripke Structures

® Equivalent to alternative operational
semantics based on labelled transition
systems
K = (S, Sy, R, L)
S : State space
So € S : Initial states

R C S xS : Transition relation

L:S — 24 : Labelling function

AP : Atomic propositions



Conformance Relations

|dealised conformance relation

® For any timed input trace, SUT should
produce the same outputs as the
model

Vi € {0,...,n} 1 siljuoursy = Silruouta

S0.S1...5y : Model trace

I /.
S9-S1 - -5, : DUT trace



Conformance Relations

|dealised conformance relation is justified
when

® |nterfaces are non-blocking

® Most-recent values of SUT outputs are
always available

® FEach sequential SUT component is
deterministic

® Synchronous concurrency semantics applies

® Application in RT-Tester: testing SCADE
software



Conformance Relations

Conformance relations in presence of
non-determinism — required for

asynchronous distributed control
systems

in presence of SUT outputs behaving
non-deterministically over certain
periods of time — often due to under-
specification



Conformance Relations

Non-determinism as handled in RT-Tester

Admissible output
deviations

Admissible output
latency

Admissible early changes

Time-bounded non-
deterministic assignment

Model transformation
SUT —Test oracle

=
|l

UNDEF (t,c);



Model Transformation for Test

Oracles
Model component with Transformed into modified
associated state machine and
state machine ... test oracle

................................................................................................................




SUT component with

Model Transformation for Test
Oracles

associated
state machine

—

X

Transformed model consisting
of transformed state machine
and oracle

SUT(C;)

...........................................................................................................................




Model Transformation for Test Oracles
C; T C; T

= =

x> 0]/

[ cl J Y =yl <ey)/
X |/ | a=2%y;
=8
v cl

x . Input 2 ==1]/
y, z: expected SUT outputs according to model | a = 0

y', 2": observed SUT outputs
a : internal model variable




Test Oracle

after(t) <0 1 ly—y|>eAy=uyl

UNDEF(¢, c)/

after(ég)

y: expected value
Yo: last expected value

y': observed value

gy: admissible deviation for y exrror
58: admissible latency for y

5;: admissible time for early changes of v’

5y?<52

after(éé)



Conformance Relation

® For a given input sequence and
resulting SUT 1I/O trace, the
transformed system should never

assume an error state in any of its
test oracles.

Vsy...s .80 ...s :(WVi=0,...,n,y €O :

5;|Iu{£} — S;L‘Iu{f} A si(y) = Sj(y/)) =
(Vi=0,...,n,5=1,...,k:=s; (O;.error))



® Requirements, test cases and
strategies



Requirements

® Fach requirement is reflected by set
of model computations

T —= S0.51.592 .

® Computation sets can be characterised
by Linear Temporal Logic (LTL)

Go : Globa.
X : In the next state on pat]

Fo¢ : Fina.

ly ¢ hol

ly ¢ holds on pat.

n 7, formula ¢ hol

ds on pat.

N T
ds.

1 7T

oUv : FiY and ¢ holds on path 7 until

| is fulfil

led



Requirements — LTL Examples

® REQ-00I. Flashing requires sufficient voltage

G (Voltage < 80 =
X (—(FlashLeft V FlashRight) U Voltage > 80))

® Reduced to model computations

G (Voltage < 80 = X(Idle U Voltage > 80))

® Finally F'(Voltage < 80)



Requirements — LTL Examples

® Requirements specification is
simplified by referring to internal
model symbols

® REQ-002. Flashing with 340/320ms
on-off-periods

F(OFF A X ON)



Requirements Tracing to Model
Elements

® Simple requirements tracing: every computation
finally covering one model element of a given
collection contributes to the requirement

F(State Formula)

® Simple requirements are reflected by formulas

satisfying h
i=0



Requirements [racing —
Complex Requirements

® Computations contributing to
complex requirements require full
LTL expressions

® |nsert LTL formula in constraint

® Link constraint to requirement via
<<satisfy>> relation



Requirement

Constraint

REQ-001 Flashing requires
sufficient voltage

F'(Voltage < 80)

REQ-002 Flashing with
340ms/320ms on-off periods

F(OFF A XON)

REQ-003 Switch on turn in-
dication left

F(FlashLeft = 1 A FlashRight = 0)

REQ-004 Switch on turn in-
dication right

F(FlashLeft = 0 A FlashRight = 1)

REQ-005 Emergency flash-
ing on overrides left/right
flashing

F(EMER_OFF A TurnlndLvr > 0 A EmerFlash)

REQ-006 Left- /right flashing
overrides emergency flashing

F TURN_IND _OVERRIDE

REQ-007 Resume emergency
flashing

F(TURN_IND_OVERRIDE A XEMER_ACTIVE)

REQ-008 Resume turn indi-
cation flashing

F(EMER_ACTIVE A —=EmerFlash A TurnIndLvr > 0)

REQ-009 Tip flashing

F'(Voltage > 80 A —(Left V Right) A
Left1l 4+ Rightl = 1 A FlashCtr < 3)




Test Cases

Test cases are finite witnesses of model
computations

Trace = finite prefix of a computation

If computation satisfies LTL formula associated with
a requirement, trace prefixes must at least not
violate this formula

Some formulas can only be verified on an infinite
computation (liveness formulas, e.g. fairness
properties)

But these properties can only be partially verified by
testing



Trace Semantics for LTL Formulas

(p)¥ states that formula ¢ holds in trace segment
S;.8¢4+1.-.5k of a trace S0 ...Sk

o (G )b =N\io(p)t

o (X o)F =(p)k,

o (U )k =)V ((p)F A (p U p)E,)
o (Fy)f = (true U o)}



Test Data Computation

® | TL formulas interpreted on finite
traces can be transformed into first
order expressions

n

tc = J(s0) N /\ D(s4,8i41) NG(S0,- -+, Sny1)
i=0

® Recall. These formulas can be solved by
an SMT solver



Model Coverage Strategies

Strategies currently realised in RT-Tester

Basic control state coverage

Transition coverage

MC/DC coverage

Hierarchic transition coverage

Equivalence class and boundary value coverage
Basic control state pairs coverage

Interface coverage

Block coverage



Model Coverage Strategies

® Example. Hierarchic transition coverage
for state machine FLASH CTRL

tcc = F(EMER_OFF A EmerFlash)
tcc, = F(EMER_ACTIVE A TurnlndLvr # 0 A
((TurnlndLvr = 1) # Leftl Vv
(TurnIndLvr = 2) # Right1))
tc¢ = F(—-EmerFlash A TURN_IND_OVERRIDE A

TurnIndLvr # 0)



Turn Indication Controller

[FLASH_CTRLJ

o

!

" EMER OFF S

EmerFlashyy  |EMER_ON : EMER_ON

J

do : doEmerOfH OO
[hot EmerFlash]/




(EMER_ONJ

[(TurnindLw <> 0) and

((TurnindLwr = 1) <> Left1 or
(TurnindLwr = 2) <> Right1)]/

[ EMER_ACTIVE

Entry/Left .= true;
Left1 := (TumIndLwr = 1);
Right := true;

@ighﬂ = (TurnindLvr = 2)

A\

-
-
¢ ~ -~ ~  «satisfy»
-

«requirement»

REQ-005 Emergency flashing on
overrides left/right flashing

-
-

[(Left1 or Right1) and
(TurnindLwr = 0)]/

[TurnindLvr = 0}/

oo >

«satisfy»

«requirement»
REQ-007 Resume emergency flashing

V

" TURN_IND_OVERRIDE |

do : doTurnIindOverride
Entry/Left := (TurnindLwr = 1);

\Right = (TurnindLwr = 2); )
]
v «satisfy»

«requirement»

REQ-006 Left-/right flashing overrides emergency flashing




Requirements [racing

® |[f some model elements are linked to
requirement R via <<satisfy>>
relationship, then model coverage test

cases fc covering these elements are
automatically traced to R:

® tc <<verify>> R



Requirements [racing

If requirement R is characterised by complex LTL
formula ¢, proceed as follows

e Transform ¢ into some disjunctive form ¢ = \/._, @;

e For each ¢, associate test cases separately:

— If ¢ = ¢; and (tc = ¢), add (tc = ) << verify >> R

— It v % ¢, and ¢; % 1, but ¥ A ¢; has solution,
add new test case (tc¢’ = ¢ A ¢;) << verify >> R.

— If ((tcp = Fy1) << verify >> R or
(tco = Fipg) << verify >> R) and
tc’ = F (11 A1) has a solution,
add tc’ << verify >> R.



Requirements [racing

Example. Refined test cases for REQ-002
(Flashing with 340/320ms on-off period)

tcr
tcs
tcg
tc1o

tCll

TurnlndLvr = 1)

320 A TurnIndLvr = 2)
320 N EMER_ACTIVE)
TURN_IND_OVERRIDE)

>V IV =

= Combinatorial explosion problem



Test Case Reduction

® Reduction is inevitable for real-world
systems

® Reduction should be justified

® |ustification should conform to V&V
standards, such as

o RTCA DO-178C
e CENELEC EN 50128:201 |
o |SO 26262



Test Case Reduction

Option 1. No further test cases when

® a|l requirements have been covered by at
least one test case

® code coverage required by the standard
has been achieved

® = This option is appropriate for RTCA

DO-178C, if code coverage measurement
is possible



Test Case Reduction

Option 2. Test case selection according to
assurance level (= criticality)

® | evel 3:interface tests, basic control state
coverage

® |evel 2: + transition coverage

® |evel |:+ basic control state pairs coverage,
hierarchic transition coverage, MC/DC
coverage, first-level test case refinements as
introduced above, second-level refinements if
new conjuncts have impact on the requirement



® Conclusion - Challenges



Challenges — Modelling

® Jesting must not be delayed by modelling
® == |ncremental modelling and learning from
concrete executions
® Complexity

® = Abstraction, equivalence class partitioning

® Jest model development requires higher skills
than test script programming

® = Management issue: need fewer engineers with

higher competence



Challenges — Test Cases /
Strategies

Coping with state space complexity in
Systems of Systems (SoS)

® Associate mission threads of
constituent systems with equivalence
classes

® On S0S level, identify “relevant” class
combinations by means of impact
analysis



Challenges — SoS-Specific

® Dynamic changes of system
configuration & run-time acceptance

testing required

® Under-specification and non-
determinism due to abstractions in
contracts

® |ustification of test strategies by proof
of exhaustiveness: still possible on this
level?
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