
Industrial-Strength Model-
Based Testing - State of the Art

and Current Challenges

Jan Peleska
University of Bremen

Verified Systems International GmbH
MBT Workshop, Rome, 2013-03-17

Overview

• Model-based testing

• A reference tool

• Modelling aspects

• Requirements, test cases and
strategies

• Conclusion – challenges

•Model-based testing

• A reference tool

• Modelling aspects

• Requirements, test cases and
strategies

• Conclusion – challenges

Model-Based Testing

• Model-based testing (MBT) as defined
in Wikipedia

• “Model-based testing is
application of Model based design for
designing and optionally also executing
artefacts to perform software testing.
Models can be used to represent the
desired behaviour of a System Under
Test (SUT), or to represent testing
strategies and a test environment.”

http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing

Model-Based Testing

• Model-based testing (MBT) as defined
in Wikipedia

• “Model-based testing is
application of Model based design for
designing and optionally also
executing artefacts to perform
software testing. Models can be used
to represent the desired behaviour of
a System Under Test (SUT), or to
represent testing strategies and a test
environment.”

We would say:
system or software

testing

http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Model_based_design
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing

Model-Based Testing

Let’s analyse this definition

• “Apply model-based design”: use
modelling formalism to specify any test-
related information

• “Models ...represent desired behaviour of ...
SUT”: Just specify the desired capabilities
of the SUT

• . . . or, alternatively . . .

Model-Based Testing

• “Models ... represent testing strategies and
a test environment”:

• It is explicitly modelled how test cases and
associated test data should be produced and

• how these should interact with the SUT

• Here MBT helps to

• represent test cases in a concise and intuitive
way

• transform test cases and data into executable
test procedures

Our MBT Approach

Instead of writing test procedures,

• develop a test model specifying expected
behaviour of SUT ➔ the first MBT variant

• use generator to identify “relevant” test
cases from the model and calculate concrete
test data

• generate test procedures fully automatic

• perform tracing requirements ↔ test
cases in a fully automatic way

• Model-based testing

•A reference tool

• Modelling aspects

• Requirements, test cases and
strategies

• Conclusion – challenges

Reference Tool RT-Tester

• Supports all test levels – from unit to
system integration testing

• Software tests and hardware-in-the-
loop tests

• Test projects may combine hand-
written test procedures with
automatically generated procedures

➜ The tool capabilities are presented here to stimulate
benchmarking activities

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling ToolTool Components
and Data Structures

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling ToolTool Components
and Data Structures

Modelling Tool
• UML/SysML subset
• Enterprise Architect
• Artisan Studio
• Rhapsody

• Alternatively:
• DSL
• MetaEdit+

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Parser Front Ends
• transform model
representations in XMI
format into abstract
syntax tree

• AST = Internal Model
Representation IMR

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Model Transformers provide
alternative AST representations
• Cone of influence reduction
• Test oracles
• Equivalence class abstraction

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Test Case Generator
• identifies “relevant” test cases
• uses ASTs as identification basis
• exploits traceability information from
requirements to model elements

• encodes test case goals as propositions

G(s0, s1, . . . , sc)

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Transition Relation Generator
• encodes operational semantics
of the model by relating
pre-states to post states

�(s, s0)

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

SMT-Solver
• calculates solution of test goals which are
compatible the transition relation

J(s0) ^
n̂

i=0

�(si, si+1) ^G(s0, . . . , sn+1)

Can handle
Boolean, Integer,
Float, Array data
types

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Concrete interpreter
• executes the model from current pre-state
with the input data calculated by the
solver

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Abstract interpreter
• speeds up SMT-solver by
• calculating minimal number of steps
required for finding solutions

• restricting the ranges of inputs and
other model variables in traces leading
to a solution of

J(s0) ^
n̂

i=0

�(si, si+1) ^G(s0, . . . , sn+1)

Model (XMI)

Transition Relation

Concrete Test Data

Test Case-
Specific Goal

RT-Tester Model Parser

Transition Relation
GeneratorTest Case Generator

SMT-Solver SONOLAR

Test Procedure
Generator

RT-Tester Test
Procedure

Model Transformers

RT-Tester IMR (AST)

Model State
Abstractions

Concrete Interpreter

Abstract Interpreter

Modelling Tool

Test Procedure Generator
• is a compile back-end for transforming
test case solutions to executable test
procedures

• provides different compile back-ends for
RT-Tester Real-Time Test Language,
PROVEtech:TA, and TTCN-3

• Model-based testing

• A reference tool

•Modelling aspects

• Requirements, test cases and
strategies

• Conclusion – challenges

Formalisms

• The controversy about modelling
formalisms is unlikely to come to an
end in the foreseeable future

• Domain-specific language methodology
even suggests that productivity and
quality are improved, if formalisms
optimised for their application domains
are used

Formalisms

Modelling formalisms supported by RT-
Tester

• Timed CSP

• CML – COMPASS Modelling Language

• Timed Moore Automata

• UML

• SysML

Formalisms

• UML

• Composite structure diagrams

• Interfaces

• Classes and operations

• State machines with timers

Formalisms

• SysML

• Block definition diagrams

• Internal block diagrams

• Item flows

• State machines with timers

• Operations

• Requirements

• <<satisfy>> relationship between
requirements and model elements

Case Study With SysML

• Simplified version of the turn
indication and emergency flashing
function in Daimler vehicles

• Full model available under

http://www.mbt-benchmarks.org

 ➔ Benchmarks

 ➔ Turn Indicator Model Rev. 1.4

http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.mbt-benchmarks.org
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html

Turn Indication Function

Requirement Description

REQ-001 Flashing requires more than 80% of
nominal input voltage

REQ-002 Flashing is performed with 340ms/320ms
on-off periods

REQ-003 Turn indication lever switched to 1 results
in left-hand side flashing

... ...

Test Model

SUT and TE

TESUT

Turn Indication Controller

Turn Indication Controller

Turn Indication Controller

Model Semantics

• Based on Kripke Structures

• Equivalent to alternative operational
semantics based on labelled transition
systems

K = (S, S0, R, L)

S : State space

S0 ✓ S : Initial states

R ✓ S ⇥ S : Transition relation

L : S ! 2

AP
: Labelling function

AP : Atomic propositions

Conformance Relations

Idealised conformance relation

• For any timed input trace, SUT should
produce the same outputs as the
model

8i 2 {0, . . . , n} : si|I[O[{t̂} = s0i|I[O[{t̂}

s0.s1 . . . sn : Model trace

s00.s
0
1 . . . s

0
n : SUT trace

Conformance Relations
Idealised conformance relation is justified
when

• Interfaces are non-blocking

• Most-recent values of SUT outputs are
always available

• Each sequential SUT component is
deterministic

• Synchronous concurrency semantics applies

• Application in RT-Tester: testing SCADE
software

Conformance Relations

Conformance relations in presence of
non-determinism – required for

• asynchronous distributed control
systems

• in presence of SUT outputs behaving
non-deterministically over certain
periods of time – often due to under-
specification

Conformance Relations

• Admissible output
deviations

• Admissible output
latency

• Admissible early changes

• Time-bounded non-
deterministic assignment

• Model transformation
SUT →Test oracle

Non-determinism as handled in RT-Tester

|s0(y)� s(y)|  "y

s0(t̂)� s(t̂)  �0y

s(t̂)� s0(t̂)  �1y

y = UNDEF(t,c);

Model Transformation for Test
Oracles

Ci Ci Oi

Model component with
associated
state machine ...

Transformed into modified
state machine and
test oracle

V + = V [{y0 | y 2 O}
s+ : V + ! D

Model Transformation for Test
Oracles

Ci Oi

SUT component with
associated
state machine

Transformed model consisting
of transformed state machine
and oracle

SUT (Ci)

~x

~y

~y 0

Model Transformation for Test Oracles

c0

c1

. . .

c0

c01

c1

[x > 0]/

y = y + x;

a = 2 ⇤ y;

[x > 0]/

y = y + x;

. . .

[z == 1]/

a = 0;

[z0 == 1]/

a = 0;

Ci Ci

[|y0 � y|  "y]/

a = 2 ⇤ y;

x : input

y, z: expected SUT outputs according to model

y

0
, z

0
: observed SUT outputs

a : internal model variable

Test Oracle

s0

s1

error

s2 s3

after(t)

[y 6= y0]/

y0 = y;

[|y � y0| > "y ^ y = y0]

[y 6= y0]/

y0 = y;

after(�1y)after(�0y)

y: expected value

y0: last expected value

y0: observed value

"y: admissible deviation for y
�0y: admissible latency for y
�1y: admissible time for early changes of y0

�1y < �0y

UNDEF(t, c)/

y = c;
[|y � y0|  "y]

Conformance Relation

• For a given input sequence and
resulting SUT I/O trace, the
transformed system should never
assume an error state in any of its
test oracles.

8s00 . . . s0n, s+0 . . . s+n : (8i = 0, . . . , n, y 2 O :

s0i|I[{t̂} = s+i |I[{t̂} ^ s0i(y) = s+i (y
0)))

(8i = 0, . . . , n, j = 1, . . . , k : ¬s+i (Oj .error))

• Model-based testing

• A reference tool

• Modelling aspects

•Requirements, test cases and
strategies

• Conclusion – challenges

Requirements

• Each requirement is reflected by set
of model computations

⇡ = s0.s1.s2 . . .

• Computation sets can be characterised
by Linear Temporal Logic (LTL)

G� : Globally � holds on path ⇡

X� : In the next state on path ⇡, formula � holds.

F� : Finally � holds on path ⇡

�U : F and � holds on path ⇡ until is fulfilled

Requirements – LTL Examples

• REQ-001. Flashing requires sufficient voltage

G(Voltage  80)
X(¬(FlashLeft _ FlashRight) U Voltage > 80))

• Reduced to model computations

G(Voltage  80) X(Idle U Voltage > 80))

• Finally F(Voltage  80)

Requirements – LTL Examples

• Requirements specification is
simplified by referring to internal
model symbols

• REQ-002. Flashing with 340/320ms
on-off-periods

F(OFF ^X ON)

Requirements Tracing to Model
Elements

• Simple requirements tracing: every computation
finally covering one model element of a given
collection contributes to the requirement

FhState Formulai

• Simple requirements are reflected by formulas
satisfying

F

h_

i=0

�i

!

Requirements Tracing –
Complex Requirements

• Computations contributing to
complex requirements require full
LTL expressions

• Insert LTL formula in constraint

• Link constraint to requirement via
<<satisfy>> relation

Requirement Constraint

REQ-001 Flashing requires
su�cient voltage

F(Voltage  80)

REQ-002 Flashing with
340ms/320ms on-o↵ periods

F(OFF ^XON)

REQ-003 Switch on turn in-
dication left

F(FlashLeft = 1 ^ FlashRight = 0)

REQ-004 Switch on turn in-
dication right

F(FlashLeft = 0 ^ FlashRight = 1)

REQ-005 Emergency flash-
ing on overrides left/right
flashing

F(EMER OFF ^ TurnIndLvr > 0 ^ EmerFlash)

REQ-006 Left-/right flashing
overrides emergency flashing

F TURN IND OVERRIDE

REQ-007 Resume emergency
flashing

F(TURN IND OVERRIDE ^XEMER ACTIVE)

REQ-008 Resume turn indi-
cation flashing

F(EMER ACTIVE^¬EmerFlash^TurnIndLvr > 0)

REQ-009 Tip flashing F(Voltage > 80 ^ ¬(Left _ Right) ^
Left1 + Right1 = 1 ^ FlashCtr < 3)

Test Cases

• Test cases are finite witnesses of model
computations

• Trace = finite prefix of a computation

• If computation satisfies LTL formula associated with
a requirement, trace prefixes must at least not
violate this formula

• Some formulas can only be verified on an infinite
computation (liveness formulas, e.g. fairness
properties)

• But these properties can only be partially verified by
testing

Trace Semantics for LTL Formulas

h'iki states that formula ' holds in trace segment

si.si+1 . . . sk of a trace s0 . . . sk

• hG 'ik0 =

Vk
i=0h'iki

• hX 'iki = h'iki+1

• h' U iki = h iki _ (h'iki ^ h' U iki+1)

• hF iki = htrue U iki

Test Data Computation

• LTL formulas interpreted on finite
traces can be transformed into first
order expressions

tc ⌘ J(s0) ^
n̂

i=0

�(si, si+1) ^G(s0, . . . , sn+1)

• Recall. These formulas can be solved by
an SMT solver

Model Coverage Strategies
Strategies currently realised in RT-Tester

• Basic control state coverage

• Transition coverage

• MC/DC coverage

• Hierarchic transition coverage

• Equivalence class and boundary value coverage

• Basic control state pairs coverage

• Interface coverage

• Block coverage

Model Coverage Strategies

• Example. Hierarchic transition coverage
for state machine FLASH_CTRL

tc1 ⌘ F(EMER OFF ^ EmerFlash)

tc2 ⌘ F(EMER ACTIVE ^ TurnIndLvr 6= 0 ^
((TurnIndLvr = 1) 6= Left1 _

(TurnIndLvr = 2) 6= Right1))

. . .

tc6 ⌘ F(¬EmerFlash ^ TURN IND OVERRIDE ^
TurnIndLvr 6= 0)

Turn Indication Controller

Requirements Tracing

• If some model elements are linked to
requirement R via <<satisfy>>
relationship, then model coverage test
cases tc covering these elements are
automatically traced to R:

• tc <<verify>> R

Requirements Tracing
If requirement R is characterised by complex LTL
formula 𝜙, proceed as follows
• Transform � into some disjunctive form � ⌘

Wm
i=0 �i

• For each �i associate test cases separately:

– If) �i and (tc ⌘), add (tc ⌘) << verify >> R

– If 6) �i and �i 6) , but ^ �i has solution,
add new test case (tc0 ⌘ ^ �i) << verify >> R.

– If ((tc1 ⌘ F 1) << verify >> R or

(tc2 ⌘ F 2) << verify >> R) and
tc0 ⌘ F(1 ^ 2) has a solution,

add tc0 << verify >> R.

Requirements Tracing

Example. Refined test cases for REQ-002
(Flashing with 340/320ms on-off period)

☞ Combinatorial explosion problem

tc7 ⌘ F(OFF ^ (XON))

tc8 ⌘ F(OFF ^ (XON) ^ TurnIndLvr = 1)

tc9 ⌘ F(OFF ^ (XON) � 320 ^ TurnIndLvr = 2)

tc10 ⌘ F(OFF ^ (XON) � 320 ^ EMER ACTIVE)

tc11 ⌘ F(OFF ^ (XON) ^ TURN IND OVERRIDE)

. . .

Test Case Reduction

• Reduction is inevitable for real-world
systems

• Reduction should be justified

• Justification should conform to V&V
standards, such as

• RTCA DO-178C

• CENELEC EN 50128:2011

• ISO 26262

Test Case Reduction

Option 1. No further test cases when

• all requirements have been covered by at
least one test case

• code coverage required by the standard
has been achieved

• ☞ This option is appropriate for RTCA

DO-178C, if code coverage measurement
is possible

Test Case Reduction

Option 2. Test case selection according to
assurance level (= criticality)

• Level 3: interface tests, basic control state
coverage

• Level 2: + transition coverage

• Level 1: + basic control state pairs coverage,
hierarchic transition coverage, MC/DC
coverage, first-level test case refinements as
introduced above, second-level refinements if
new conjuncts have impact on the requirement

• Model-based testing

• A reference tool

• Modelling aspects

• Requirements, test cases and
strategies

•Conclusion – Challenges

Challenges – Modelling

• Testing must not be delayed by modelling

• ☞ Incremental modelling and learning from

concrete executions

• Complexity

• ☞ Abstraction, equivalence class partitioning

• Test model development requires higher skills
than test script programming

• ☞ Management issue: need fewer engineers with

higher competence

Challenges – Test Cases /
Strategies

Coping with state space complexity in
Systems of Systems (SoS)

• Associate mission threads of
constituent systems with equivalence
classes

• On SoS level, identify “relevant” class
combinations by means of impact
analysis

Challenges – SoS-Specific

• Dynamic changes of system
configuration ☞ run-time acceptance

testing required

• Under-specification and non-
determinism due to abstractions in
contracts

• Justification of test strategies by proof
of exhaustiveness: still possible on this
level?

Contributors ...

Contributors ...

Acknowledgements. This
presentation has been elaborated in the
context of the EU FP7 COMPASS project
under grant agreement no.287829.

