
Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
1

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Towards Symbolic Model-Based Mutation Testing:

Combining Reachability and Refinement Checking

Bernhard K. Aichernig, Elisabeth Jöbstl

Institute for Software Technology
Graz University of Technology

ejoebstl@ist.tugraz.at
www.ist.tugraz.at

!

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
2

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Model-Based Testing

model

SUT
(black box)

test case generator

verdicts

test case executor

Requirements

conformance conformance

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
3

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Model-Based Mutation Testing

model

SUT
(black box)

test case generator

verdicts

test case executor

Requirements fault models

mutated
models

conformance

conformance

conformance

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
4

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Outlook

•  Action Systems

•  Conformance

•  Refinement Checking

•  Experimental Results

•  Future Work & Conclusions

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
5

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Action Systems

•  Ralph-Johan Back

•  Guarded commands

•  Reactive systems

•  Non-determinism

type(int, X) :- X in 0..10.!
var([v1, v2], int).!

state_def([v1, v2]).!
init([0,0]).!

!
as :-!

 actions (!
 A1 :: g1 => v1 := e1 ,!

 ... ,!
 Am(X) :: gm => (g => (v1 := X ; v2 := e2))!

),!
 dood (!

 A1 [] ... [] Am!
).!

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
6

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Semantics of Actions

•  Predicative Semantics
•  UTP (Unifying Theories of Programming)

l :: g => B =df g ^ B ^ tr

0
= tr b [l]

l(X) :: g => B =df 9 X : g ^ B ^ tr

0
= tr b [l(X)]

x := e =df x

0
= e ^ y

0
= y ^ ... ^ z

0
= z

g => B =df g ^ B

B(v, v

0
);B(v, v

0
) =df 9 v0 : B(v, v0) ^ B(v0, v

0
)

B [] B =df B _ B

Fig. 2. Predicative semantics of actions

Listing 1.1. Prolog code snippet for finding the mutated action and the corresponding

non-refinement constraint

1 findMutatedAction(AS, ASM , A_m , CS_nonrefine) :-

2 trans(AS , CS_as , D_as , V, V_p , Tr , Tr_p , Lbl_as),

3 getAction(ASM , A_m),

4 trans(A_m , ASM , CS_asm , D_asm , V, V_p , Tr , Tr_p , Lbl_asm),

5 appendAndSort(Lbl_as , Lbl_asm , V, Vp , Tr , Tr_p , Lbl),

6 CS_nonrefine = (D_asm #/\ D_as #/\ CS_asm #/\ #\ CS_as ,

labeling ([], Lbl)),

7 call(CS_nonrefine).

2.2 Conformance/Refinement

pitfalls [2]

3 E�cient Refinement Checking

Listing 1.1:

1. translate whole original

2. translate 1 action of mutant (unification for pre- and post-state vectors V

and V p, pre- and post-traces Tr and Tr p)

3. optimize variable ordering for labeling: at first pre- and post-state Prolog

variables as well as variables for traces and parameters, then intermediate

variables

4. build non-refinement constraint

5. call built-in constraint solver to solve the non-refinement constraint: if so-

lution, then predicate findMutatedAction successful and the current non-

refinement constraint CS nonrefine and the mutated action A m are “re-

turned”

if fail: backtracking to “getAction” and try with next action of mutated

action system ASM

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
7

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Conformance

•  UTP‘s Refinement:

•  We want to find counterexamples for refinement, i.e.,
cases where

•  Unsafe state:

6 Towards Symbolic Model-Based Mutation Testing

3.2 Conformance

Once the modelling language with a precise semantics is fixed, we can define what it means that a SUT
conforms to a given reference model, i.e. if the observations of a SUT confirm the theory induced by a
formal model. This relation between a model and the SUT is called the conformance relation.

In model-based mutation testing, the conformance relation plays an additional role. It defines if a
syntactic change in a mutant represents an observable fault, i.e. if a mutant is equivalent or not. However,
for non-deterministic models an equivalence relation is no suitable conformance relation. An abstract
non-deterministic model may do more than its concrete counterpart. Hence, useful conformance relations
are order-relations rather than equivalence relations, the order going from abstract to more concrete
models. In this work, we have chosen UTP’s refinement relation as a conformance relation. UTP defines
refinement via implication, i.e. more concrete implementations I imply more abstract models M.
Definition 3.1. (Refinement)

M v I =df 8x,x0y,y0, · · · 2 a : I) M for all M, I with alphabet a .

The alphabet a is the set of variables denoting observations.
In [4] we have developed a mutation testing theory based on this notion of refinement. The key

idea is to find test cases whenever a mutated model MM does not refine an original model MO, i.e. if
MO 6v MM. Hence, we are interested in counter-examples to refinement. From Definition 3.1 follows
that such counter-examples exist if and only if implication does not hold:

9x,x0,y,y0, · · · 2 a : MM ^¬MO

This formula expresses that there are observations in the mutant MM that are not allowed by the original
model MO. We call a state, i.e. a valuation of all variables, unsafe if such an observation can be made.
Definition 3.2. (Unsafe State) A pre-state u is called unsafe if it shows wrong (not conforming) be-
haviour in a mutated model MM with respect to an original model MO. Formally, we have:

u 2 {s | 9 s0 : MM(s,s0)^¬MO(s,s0)}

We see that an unsafe state can lead to an incorrect next state. In model-based mutation testing, we
are interested in generating test cases that cover such unsafe states. Hence, our fault-based testing criteria
are based on the notion of unsafe states. How to search for unsafe states in action systems efficiently is
discussed in the next section.

4 Searching Unsafe States

Figure 4 gives an overview of our approach to find an unsafe state. The inputs are the original action
system model ASO and a mutated version ASM. Each action system consists of a set of actions ASO

i and
ASM

j respectively, which are connected via non-deterministic choice. The first step is a preprocessing
activity to check for refinement quickly. It is depicted on the left-hand side of Figure 4 as box find
mutated action. If there does not exist an unsafe state at this point, we cannot find any mutated action
that yields non-conformance. Hence, we already know that the action systems are equivalent. If we
find an unsafe state in this phase, we cannot be sure that it is reachable from the initial state of the
action system. But we know which action has been mutated and are able to construct a non-refinement
constraint, which describes the set of all unsafe states. The next step performs a reachability analysis
and uses the non-refinement constraint to test each reached state whether it is an unsafe state. In the
following, we give more details.

6 Towards Symbolic Model-Based Mutation Testing

3.2 Conformance

Once the modelling language with a precise semantics is fixed, we can define what it means that a SUT
conforms to a given reference model, i.e. if the observations of a SUT confirm the theory induced by a
formal model. This relation between a model and the SUT is called the conformance relation.

In model-based mutation testing, the conformance relation plays an additional role. It defines if a
syntactic change in a mutant represents an observable fault, i.e. if a mutant is equivalent or not. However,
for non-deterministic models an equivalence relation is no suitable conformance relation. An abstract
non-deterministic model may do more than its concrete counterpart. Hence, useful conformance relations
are order-relations rather than equivalence relations, the order going from abstract to more concrete
models. In this work, we have chosen UTP’s refinement relation as a conformance relation. UTP defines
refinement via implication, i.e. more concrete implementations I imply more abstract models M.
Definition 3.1. (Refinement)

M v I =df 8x,x0y,y0, · · · 2 a : I) M for all M, I with alphabet a .

The alphabet a is the set of variables denoting observations.
In [4] we have developed a mutation testing theory based on this notion of refinement. The key

idea is to find test cases whenever a mutated model MM does not refine an original model MO, i.e. if
MO 6v MM. Hence, we are interested in counter-examples to refinement. From Definition 3.1 follows
that such counter-examples exist if and only if implication does not hold:

9x,x0,y,y0, · · · 2 a : MM ^¬MO

This formula expresses that there are observations in the mutant MM that are not allowed by the original
model MO. We call a state, i.e. a valuation of all variables, unsafe if such an observation can be made.
Definition 3.2. (Unsafe State) A pre-state u is called unsafe if it shows wrong (not conforming) be-
haviour in a mutated model MM with respect to an original model MO. Formally, we have:

u 2 {s | 9 s0 : MM(s,s0)^¬MO(s,s0)}

We see that an unsafe state can lead to an incorrect next state. In model-based mutation testing, we
are interested in generating test cases that cover such unsafe states. Hence, our fault-based testing criteria
are based on the notion of unsafe states. How to search for unsafe states in action systems efficiently is
discussed in the next section.

4 Searching Unsafe States

Figure 4 gives an overview of our approach to find an unsafe state. The inputs are the original action
system model ASO and a mutated version ASM. Each action system consists of a set of actions ASO

i and
ASM

j respectively, which are connected via non-deterministic choice. The first step is a preprocessing
activity to check for refinement quickly. It is depicted on the left-hand side of Figure 4 as box find
mutated action. If there does not exist an unsafe state at this point, we cannot find any mutated action
that yields non-conformance. Hence, we already know that the action systems are equivalent. If we
find an unsafe state in this phase, we cannot be sure that it is reachable from the initial state of the
action system. But we know which action has been mutated and are able to construct a non-refinement
constraint, which describes the set of all unsafe states. The next step performs a reachability analysis
and uses the non-refinement constraint to test each reached state whether it is an unsafe state. In the
following, we give more details.

6 Towards Symbolic Model-Based Mutation Testing

3.2 Conformance

Once the modelling language with a precise semantics is fixed, we can define what it means that a SUT
conforms to a given reference model, i.e. if the observations of a SUT confirm the theory induced by a
formal model. This relation between a model and the SUT is called the conformance relation.

In model-based mutation testing, the conformance relation plays an additional role. It defines if a
syntactic change in a mutant represents an observable fault, i.e. if a mutant is equivalent or not. However,
for non-deterministic models an equivalence relation is no suitable conformance relation. An abstract
non-deterministic model may do more than its concrete counterpart. Hence, useful conformance relations
are order-relations rather than equivalence relations, the order going from abstract to more concrete
models. In this work, we have chosen UTP’s refinement relation as a conformance relation. UTP defines
refinement via implication, i.e. more concrete implementations I imply more abstract models M.
Definition 3.1. (Refinement)

M v I =df 8x,x0y,y0, · · · 2 a : I) M for all M, I with alphabet a .

The alphabet a is the set of variables denoting observations.
In [4] we have developed a mutation testing theory based on this notion of refinement. The key

idea is to find test cases whenever a mutated model MM does not refine an original model MO, i.e. if
MO 6v MM. Hence, we are interested in counter-examples to refinement. From Definition 3.1 follows
that such counter-examples exist if and only if implication does not hold:

9x,x0,y,y0, · · · 2 a : MM ^¬MO

This formula expresses that there are observations in the mutant MM that are not allowed by the original
model MO. We call a state, i.e. a valuation of all variables, unsafe if such an observation can be made.
Definition 3.2. (Unsafe State) A pre-state u is called unsafe if it shows wrong (not conforming) be-
haviour in a mutated model MM with respect to an original model MO. Formally, we have:

u 2 {s | 9 s0 : MM(s,s0)^¬MO(s,s0)}

We see that an unsafe state can lead to an incorrect next state. In model-based mutation testing, we
are interested in generating test cases that cover such unsafe states. Hence, our fault-based testing criteria
are based on the notion of unsafe states. How to search for unsafe states in action systems efficiently is
discussed in the next section.

4 Searching Unsafe States

Figure 4 gives an overview of our approach to find an unsafe state. The inputs are the original action
system model ASO and a mutated version ASM. Each action system consists of a set of actions ASO

i and
ASM

j respectively, which are connected via non-deterministic choice. The first step is a preprocessing
activity to check for refinement quickly. It is depicted on the left-hand side of Figure 4 as box find
mutated action. If there does not exist an unsafe state at this point, we cannot find any mutated action
that yields non-conformance. Hence, we already know that the action systems are equivalent. If we
find an unsafe state in this phase, we cannot be sure that it is reachable from the initial state of the
action system. But we know which action has been mutated and are able to construct a non-refinement
constraint, which describes the set of all unsafe states. The next step performs a reachability analysis
and uses the non-refinement constraint to test each reached state whether it is an unsafe state. In the
following, we give more details.

6 Towards Symbolic Model-Based Mutation Testing

3.2 Conformance

Once the modelling language with a precise semantics is fixed, we can define what it means that a SUT
conforms to a given reference model, i.e. if the observations of a SUT confirm the theory induced by a
formal model. This relation between a model and the SUT is called the conformance relation.

In model-based mutation testing, the conformance relation plays an additional role. It defines if a
syntactic change in a mutant represents an observable fault, i.e. if a mutant is equivalent or not. However,
for non-deterministic models an equivalence relation is no suitable conformance relation. An abstract
non-deterministic model may do more than its concrete counterpart. Hence, useful conformance relations
are order-relations rather than equivalence relations, the order going from abstract to more concrete
models. In this work, we have chosen UTP’s refinement relation as a conformance relation. UTP defines
refinement via implication, i.e. more concrete implementations I imply more abstract models M.
Definition 3.1. (Refinement)

M v I =df 8x,x0y,y0, · · · 2 a : I) M for all M, I with alphabet a .

The alphabet a is the set of variables denoting observations.
In [4] we have developed a mutation testing theory based on this notion of refinement. The key

idea is to find test cases whenever a mutated model MM does not refine an original model MO, i.e. if
MO 6v MM. Hence, we are interested in counter-examples to refinement. From Definition 3.1 follows
that such counter-examples exist if and only if implication does not hold:

9x,x0,y,y0, · · · 2 a : MM ^¬MO

This formula expresses that there are observations in the mutant MM that are not allowed by the original
model MO. We call a state, i.e. a valuation of all variables, unsafe if such an observation can be made.
Definition 3.2. (Unsafe State) A pre-state u is called unsafe if it shows wrong (not conforming) be-
haviour in a mutated model MM with respect to an original model MO. Formally, we have:

u 2 {s | 9 s0 : MM(s,s0)^¬MO(s,s0)}

We see that an unsafe state can lead to an incorrect next state. In model-based mutation testing, we
are interested in generating test cases that cover such unsafe states. Hence, our fault-based testing criteria
are based on the notion of unsafe states. How to search for unsafe states in action systems efficiently is
discussed in the next section.

4 Searching Unsafe States

Figure 4 gives an overview of our approach to find an unsafe state. The inputs are the original action
system model ASO and a mutated version ASM. Each action system consists of a set of actions ASO

i and
ASM

j respectively, which are connected via non-deterministic choice. The first step is a preprocessing
activity to check for refinement quickly. It is depicted on the left-hand side of Figure 4 as box find
mutated action. If there does not exist an unsafe state at this point, we cannot find any mutated action
that yields non-conformance. Hence, we already know that the action systems are equivalent. If we
find an unsafe state in this phase, we cannot be sure that it is reachable from the initial state of the
action system. But we know which action has been mutated and are able to construct a non-refinement
constraint, which describes the set of all unsafe states. The next step performs a reachability analysis
and uses the non-refinement constraint to test each reached state whether it is an unsafe state. In the
following, we give more details.

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
8

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Example: Non-Refinement

Mutant 1 MM1 Original MO

a1 a2 a1 a2

6 Towards Symbolic Model-Based Mutation Testing

3.2 Conformance

Once the modelling language with a precise semantics is fixed, we can define what it means that a SUT
conforms to a given reference model, i.e. if the observations of a SUT confirm the theory induced by a
formal model. This relation between a model and the SUT is called the conformance relation.

In model-based mutation testing, the conformance relation plays an additional role. It defines if a
syntactic change in a mutant represents an observable fault, i.e. if a mutant is equivalent or not. However,
for non-deterministic models an equivalence relation is no suitable conformance relation. An abstract
non-deterministic model may do more than its concrete counterpart. Hence, useful conformance relations
are order-relations rather than equivalence relations, the order going from abstract to more concrete
models. In this work, we have chosen UTP’s refinement relation as a conformance relation. UTP defines
refinement via implication, i.e. more concrete implementations I imply more abstract models M.
Definition 3.1. (Refinement)

M v I =df 8x,x0y,y0, · · · 2 a : I) M for all M, I with alphabet a .

The alphabet a is the set of variables denoting observations.
In [4] we have developed a mutation testing theory based on this notion of refinement. The key

idea is to find test cases whenever a mutated model MM does not refine an original model MO, i.e. if
MO 6v MM. Hence, we are interested in counter-examples to refinement. From Definition 3.1 follows
that such counter-examples exist if and only if implication does not hold:

9x,x0,y,y0, · · · 2 a : MM ^¬MO

This formula expresses that there are observations in the mutant MM that are not allowed by the original
model MO. We call a state, i.e. a valuation of all variables, unsafe if such an observation can be made.
Definition 3.2. (Unsafe State) A pre-state u is called unsafe if it shows wrong (not conforming) be-
haviour in a mutated model MM with respect to an original model MO. Formally, we have:

u 2 {s | 9 s0 : MM(s,s0)^¬MO(s,s0)}

We see that an unsafe state can lead to an incorrect next state. In model-based mutation testing, we
are interested in generating test cases that cover such unsafe states. Hence, our fault-based testing criteria
are based on the notion of unsafe states. How to search for unsafe states in action systems efficiently is
discussed in the next section.

4 Searching Unsafe States

Figure 4 gives an overview of our approach to find an unsafe state. The inputs are the original action
system model ASO and a mutated version ASM. Each action system consists of a set of actions ASO

i and
ASM

j respectively, which are connected via non-deterministic choice. The first step is a preprocessing
activity to check for refinement quickly. It is depicted on the left-hand side of Figure 4 as box find
mutated action. If there does not exist an unsafe state at this point, we cannot find any mutated action
that yields non-conformance. Hence, we already know that the action systems are equivalent. If we
find an unsafe state in this phase, we cannot be sure that it is reachable from the initial state of the
action system. But we know which action has been mutated and are able to construct a non-refinement
constraint, which describes the set of all unsafe states. The next step performs a reachability analysis
and uses the non-refinement constraint to test each reached state whether it is an unsafe state. In the
following, we give more details.

x ! 0 x ! 0

x ! 1 x ! 3 x ! 1 x ! 2

Mutant 2 MM2

a1 a3

x ! 0

x ! 1 x ! 2

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
9

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

(Non-)Refinement of Action Systems

•  Consider reachability:

Is the unsafe state reachable from the initial state?

•  Non-refinement:

•  By application of distributive law:

B.K. Aichernig & E. Jöbstl 7

find
mutated
action

reachability &
non-refinement

∑
i=1

n

AS i

∑
j=1

m

ASM j

test case
extraction

mutated
action
found

non-refinement
constraint

equivalent
mutant

max.
depth

reached

unsafe state
& trace

refined

yes

no no

yes

no

yes

end

Figure 4: Process for finding an unsafe state

4.1 Non-Refinement of Action Systems

In the previous section, we have introduced non-refinement as a general criterion for identifying unsafe
states. Now, we are going to concentrate on the special case of action systems.

The observations in our action system language are the event-traces and the system states before
(v, tr) and after one execution (v0, tr0) of the do-od block. Then, a mutated action system ASM refines its
original version ASO if and only if all observations possible in the mutant are allowed by the original.
Hence, our notion of refinement is based on both, event traces and state. However, in an action system
not all states are reachable from the initial state. Therefore, reachability has to be taken into account.

We reduce the general refinement problem of action systems to a step-wise simulation problem only
considering the execution of the do-od block from reachable states:

Definition 4.1. (Refinement of Action Systems) Let ASO and ASM be two action systems with corre-
sponding do-od blocks PO and PM. Furthermore, we assume a function reachable that returns the set of
reachable states for a given trace in an action system. Then

ASO v ASM =df 8v,v0, tr, tr0 : ((v 2 reachable(ASO, tr)^PM)) PO) .

This definition is different to Back’s original refinement definition based on state traces[9]. Here,
also the possible event traces are taken into account. Hence, also the action labels have to be refined.

Negating this refinement definition and considering the fact that the do-od block is a non-deterministic
choice of actions Ai leads to the non-refinement condition for two action systems:

9v,v0, tr, tr0 : (v 2 reachable(ASO, tr)^ (AM
1 _ · · ·_AM

n)^¬AO
1 ^ · · ·^¬AO

m)

By applying the distributive law, we bring the disjunction outwards and obtain a set of constraints for
detecting non-refinement.

8 Towards Symbolic Model-Based Mutation Testing

Algorithm 1 findMutatedAction(ASO,ASM) : (ASM
i ,CS nonrefine)

1: CS ASO := trans(ASO)
2: for all AM

i 2 ASM do
3: CS ASM

i := trans(AM
i)

4: CS nonrefine := CS ASM
i ^¬CS ASO

5: if sat(CS nonrefine) then
6: return (AM

i ,CS nonrefine) // mutated action found
7: end if
8: end for
9: return (nil, false) // equiv

Theorem 4.1. (Non-refinement) A mutated action system ASM does not refine its original ASO, iff any
action AM

i of the mutant shows trace or state-behaviour that is not possible in the original action system:

ASO 6v ASM
iff

n_

i=1
9v,v0, tr, tr0 : (v 2 reachable(ASO, tr)^AM

i ^¬AO
1 ^ · · ·^¬AO

m)

In the following, we discuss how this property is applied in our refinement checking process.

4.2 Finding a Mutated Action

The non-refinement condition presented in Theorem 4.1 is a disjunction of constraints of which each
deals with one action AM

i of the mutated action system ASM. Hence, it is sufficient to satisfy one of these
sub-constraints in order to find non-conformance. We use this for our implementation as we perform
the non-refinement check action by action. Here, we first concentrate on finding a possibly unreachable
unsafe state. Reachability is dealt with separately (see Section 4.3).

Algorithm 1 gives details on the action-wise non-refinement check, which is depicted on the left-
hand side of Figure 4 (box find mutated action). We transform the whole do-od block of the original into
a constraint system according to our predicative semantics of action systems (Line 1). We then translate
one action of the mutated action system into a constraint system (Line 3). The non-refinement constraint
CS nonrefine is the conjunction of the constraint system representing the mutated action (CS ASM

i) and
the negated constraint system representing the original action system (¬CS ASO, cf. Line 4). Note that
sequential composition involves existential quantification, which becomes universal quantification due
to negation. Existential quantification is implicit in constraint systems. Universal quantification would
lead to quantified constraint satisfaction problems (QCSPs) that are not supported by common constraint
solvers. Fortunately, we can resolve this problem by a normal form that requires that non-deterministic
choice is always the outermost operator and not allowed in nested expressions. In this way, the left-hand
side of a sequential composition is always deterministic and existential quantification can be eliminated.
Our car alarm system example (cf. Listing 1) already satisfies this normal form. Otherwise, each action
system can be automatically rewritten to this normal form. This has not yet been implemented.

The non-refinement constraint for the just translated action is then given to a constraint solver to
check whether it is satisfiable by any v,v0, tr, tr0(Line 5), i.e., whether there exists an unsafe state v
for ASM and ASO. If yes, we found the mutated action and return it together with the according non-
refinement constraint CS nonrefine. Otherwise, the next action AM

i is investigated (loop in Line 2). If
no action leads to a satisfiable non-refinement constraint, then ASM refines ASO (Line 9). Algorithm 1

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
10

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Searching Unsafe States

find
mutated
action

reachability &
non-refinement

unsafe
state &
trace

equivalent
mutant

end

mutated
action
found

max.
depth

reached

refined

non-refinement
constraint

test case
extraction

AS

ASM

no

no

no

yes

yes

yes

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
11

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Finding a Mutated Action

find
mutated
action

reachability &
non-refinement

unsafe
state &
trace

equivalent
mutant

end

mutated
action
found

max.
depth

reached

refined

non-refinement
constraint

test case
extraction

AS

ASM

no

no

no

yes

yes

yes

•  refinement check

action per action of

ASM

•  fast

8 Towards Symbolic Model-Based Mutation Testing

Algorithm 1 findMutatedAction(ASO,ASM) : (ASM
i ,CS nonrefine)

1: CS ASO := trans(ASO)
2: for all AM

i 2 ASM do
3: CS ASM

i := trans(AM
i)

4: CS nonrefine := CS ASM
i ^¬CS ASO

5: if sat(CS nonrefine) then
6: return (AM

i ,CS nonrefine) // mutated action found
7: end if
8: end for
9: return (nil, false) // equiv

Theorem 4.1. (Non-refinement) A mutated action system ASM does not refine its original ASO, iff any
action AM

i of the mutant shows trace or state-behaviour that is not possible in the original action system:

ASO 6v ASM
iff

n_

i=1
9v,v0, tr, tr0 : (v 2 reachable(ASO, tr)^AM

i ^¬AO
1 ^ · · ·^¬AO

m)

In the following, we discuss how this property is applied in our refinement checking process.

4.2 Finding a Mutated Action

The non-refinement condition presented in Theorem 4.1 is a disjunction of constraints of which each
deals with one action AM

i of the mutated action system ASM. Hence, it is sufficient to satisfy one of these
sub-constraints in order to find non-conformance. We use this for our implementation as we perform
the non-refinement check action by action. Here, we first concentrate on finding a possibly unreachable
unsafe state. Reachability is dealt with separately (see Section 4.3).

Algorithm 1 gives details on the action-wise non-refinement check, which is depicted on the left-
hand side of Figure 4 (box find mutated action). We transform the whole do-od block of the original into
a constraint system according to our predicative semantics of action systems (Line 1). We then translate
one action of the mutated action system into a constraint system (Line 3). The non-refinement constraint
CS nonrefine is the conjunction of the constraint system representing the mutated action (CS ASM

i) and
the negated constraint system representing the original action system (¬CS ASO, cf. Line 4). Note that
sequential composition involves existential quantification, which becomes universal quantification due
to negation. Existential quantification is implicit in constraint systems. Universal quantification would
lead to quantified constraint satisfaction problems (QCSPs) that are not supported by common constraint
solvers. Fortunately, we can resolve this problem by a normal form that requires that non-deterministic
choice is always the outermost operator and not allowed in nested expressions. In this way, the left-hand
side of a sequential composition is always deterministic and existential quantification can be eliminated.
Our car alarm system example (cf. Listing 1) already satisfies this normal form. Otherwise, each action
system can be automatically rewritten to this normal form. This has not yet been implemented.

The non-refinement constraint for the just translated action is then given to a constraint solver to
check whether it is satisfiable by any v,v0, tr, tr0(Line 5), i.e., whether there exists an unsafe state v
for ASM and ASO. If yes, we found the mutated action and return it together with the according non-
refinement constraint CS nonrefine. Otherwise, the next action AM

i is investigated (loop in Line 2). If
no action leads to a satisfiable non-refinement constraint, then ASM refines ASO (Line 9). Algorithm 1

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
12

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Reaching an Unsafe State

find
mutated
action

reachability &
non-refinement

unsafe
state &
trace

equivalent
mutant

end

mutated
action
found

max.
depth

reached

refined

non-refinement
constraint

test case
extraction

AS

ASM

no

no

no

yes

yes

yes

•  Breadth-first search:

transition relation as

constraints

•  For each state:

check non-

refinement constraint

8 Towards Symbolic Model-Based Mutation Testing

Algorithm 1 findMutatedAction(ASO,ASM) : (ASM
i ,CS nonrefine)

1: CS ASO := trans(ASO)
2: for all AM

i 2 ASM do
3: CS ASM

i := trans(AM
i)

4: CS nonrefine := CS ASM
i ^¬CS ASO

5: if sat(CS nonrefine) then
6: return (AM

i ,CS nonrefine) // mutated action found
7: end if
8: end for
9: return (nil, false) // equiv

Theorem 4.1. (Non-refinement) A mutated action system ASM does not refine its original ASO, iff any
action AM

i of the mutant shows trace or state-behaviour that is not possible in the original action system:

ASO 6v ASM
iff

n_

i=1
9v,v0, tr, tr0 : (v 2 reachable(ASO, tr)^AM

i ^¬AO
1 ^ · · ·^¬AO

m)

In the following, we discuss how this property is applied in our refinement checking process.

4.2 Finding a Mutated Action

The non-refinement condition presented in Theorem 4.1 is a disjunction of constraints of which each
deals with one action AM

i of the mutated action system ASM. Hence, it is sufficient to satisfy one of these
sub-constraints in order to find non-conformance. We use this for our implementation as we perform
the non-refinement check action by action. Here, we first concentrate on finding a possibly unreachable
unsafe state. Reachability is dealt with separately (see Section 4.3).

Algorithm 1 gives details on the action-wise non-refinement check, which is depicted on the left-
hand side of Figure 4 (box find mutated action). We transform the whole do-od block of the original into
a constraint system according to our predicative semantics of action systems (Line 1). We then translate
one action of the mutated action system into a constraint system (Line 3). The non-refinement constraint
CS nonrefine is the conjunction of the constraint system representing the mutated action (CS ASM

i) and
the negated constraint system representing the original action system (¬CS ASO, cf. Line 4). Note that
sequential composition involves existential quantification, which becomes universal quantification due
to negation. Existential quantification is implicit in constraint systems. Universal quantification would
lead to quantified constraint satisfaction problems (QCSPs) that are not supported by common constraint
solvers. Fortunately, we can resolve this problem by a normal form that requires that non-deterministic
choice is always the outermost operator and not allowed in nested expressions. In this way, the left-hand
side of a sequential composition is always deterministic and existential quantification can be eliminated.
Our car alarm system example (cf. Listing 1) already satisfies this normal form. Otherwise, each action
system can be automatically rewritten to this normal form. This has not yet been implemented.

The non-refinement constraint for the just translated action is then given to a constraint solver to
check whether it is satisfiable by any v,v0, tr, tr0(Line 5), i.e., whether there exists an unsafe state v
for ASM and ASO. If yes, we found the mutated action and return it together with the according non-
refinement constraint CS nonrefine. Otherwise, the next action AM

i is investigated (loop in Line 2). If
no action leads to a satisfiable non-refinement constraint, then ASM refines ASO (Line 9). Algorithm 1

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
13

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Empirical Evaluation: Car Alarm System (CAS)

AlarmSystem_StateMachine

Alarm
Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
14

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Empirical Evaluation: CAS
% definitions: types, variables, state, initial state
as :-
 actions (
 'after'(Wait_time)::(true) => (
 ((Wait_time #= 20 #/\ aState #= 3) =>
 (aState := 2; fromClosedAndLocked_OR_fromSilentAndOpen := 1))
 []
 ((Wait_time #= 30 #/\ aState #= 1 #/\ fromArmed #= 4) =>
 (aState := 0; fromAlarm := 4; fromArmed := 0))
 []
 ((Wait_time #= 270 #/\ aState #= 0 #/\ fromAlarm #= 2) =>
 (aState := 7; fromAlarm := 1; fromArmed := 0))
),
 'Lock'::(true) => (
 ((aState #= 6 #/\ fromAlarm #= 0) => (aState := 5))
 []
 ((aState #= 4 #/\ fromArmed #\= 1) => (aState := 3; fromArmed := 0))
), ...
),
 dood ('Lock’ [] [X:int]:'after'(X) [] ...).

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
15

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Empirical Evaluation: Mutations

•  Manual mutations:
–  guard true: 34 mutants
–  comparison operator inversion: 52 mutants
–  increment integer constant: 116 mutants

! 206 mutants
 + 1 unaltered (original)
 = 207 mutants
 - 12 mutants (constraint solver problems)
 = 195 mutants

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
16

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

CAS version Refinement checker

find mutated
action

reach &
non-refine

total

20/30/270 total 16 90 106

average 0.08 0.46 0.54

min 0.01 0.02 0.03

max 0.30 2.80 3.10

*10 total 15 86 101

average 0.08 0.44 0.52

min 0.01 0.02 0.03

max 0.27 2.80 3.07

*100 total 16 90 106

average 0.08 0.46 0.54

min 0.01 0.02 0.03

max 0.27 2.77 3.04

*1000 total 15 85 100

average 0.08 0.44 0.52

min 0.01 0.02 0.03

max 0.27 2.69 2.96

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
17

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Refinement Checker (symbolic)

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
18

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Explicit ioco checking (Ulysses)

Action System Model

Mutated Action Systems

IOLTSS

IOLTSM

ioco ?

discriminating
test case

for every mutant

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
19

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

CAS version Refinement checker Ulysses

find mutated
action

reach &
non-refine

total in/out out

20/30/270 total 16 90 106 98 65

average 0.08 0.46 0.54 0.50 0.34

min 0.01 0.02 0.03 0.05 0.05

max 0.30 2.80 3.10 6.30 5.33

*10 total 15 86 101 8.8 h 7.9 h

average 0.08 0.44 0.52 2.7 min 2.4 min

min 0.01 0.02 0.03 0.45 0.36

max 0.27 2.80 3.07 2.6 h 2.6 h

*100 total 16 90 106 - -

average 0.08 0.46 0.54 - -

min 0.01 0.02 0.03 - -

max 0.27 2.77 3.04 - -

*1000 total 15 85 100 - -

average 0.08 0.44 0.52 - -

min 0.01 0.02 0.03 - -

max 0.27 2.69 2.96 - -

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
20

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Ulysses (explicit)

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
21

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Future Work

•  Other constraint solvers, e.g. MINION

•  SMT solvers (ongoing diploma thesis)

•  Trace to unsafe state ! adaptive test case

•  More experiments with different systems

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
22

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Conclusions

•  symbolic vs. explicit

Institute for Software Technology

Professor Horst Cerjak, 19.12.2005
23

 Elisabeth Jöbstl Tallinn, March 25th 2012 MBT 2012

Conclusions

•  symbolic vs. explicit

Thank you for your attention!

