Potential Errors and Test Assessment in
Software Product Line Engineering

A Mutation System for Variable Systems

Hartmut Lackner Martin Schmidt

hartmut.lackner@informatik.hu-berlin.de schmidma@informatik.hu-berlin.de

Graduate School METRIK
Humboldt-Universitat zu Berlin

April 18th 2015

Software Product Line

Key Drivers
 Efficient engineering by planned reuse of software
« Satisfy customer demand for individualized products

© Caterham

Definition: Software Product Line (SPL)

A Software Product Line is a set of software-intensive systems
that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a
prescribed way.

—
O]
Q
=
=}
®

S
2}
Q
=
3,
Q.
—

1
o)
o
—
@
3
=
L
m
=
o
=
(2}
Q
>
o
ol
(]
—
>
(2}
(7]
D
()]
(2]
3
@
>
—
5
w
S,
=
£
Q
=
D
Y
=
(]
Q.
c
Q
~
—
>
D
m
>

Q
=}
®
D
—=h
=}

«

[Carnegie Mellon Software Engineering Institute]

N

Assessment for Product Line Tests

- JauyoeT JnwpeH

* Product-Centered 1
1. Select products for testing from the feature model 3
2. Design test cases from product models %

.u.

e i
sl e —
. ——
.

 Product Line-Centered

1. Design test cases from product line model
2. Select product for testing from test cases

Product
Speci{:in—ﬂ-inn

Product

Product Line |::> m |::> Spegifieatian
Specification m Product
Specjfication

Product
Specification

|

Model-Based Product Line Engineering
Mutation Analysis

FOUNDATION

Phases of Product Line Engineering

. - Feature Model
Domain Analysis

« User-Visible properties
* Represents all variants

Simple PLC

Domain Design
 UML state charts

Mapping
Model

Domain Implementation /
Feature Mapping

« Maps features to state
machine elements

 Considers feature's status

—
Q
Q
Q
2
@
s
2}
o
=
=}
Q.
~
1
-
o
—
@
3
=x
o
m
3
o
-
(2}
)
>
o
o'
(]
~—
>
()]
(7]
®
()]
(2]
=
)
>
~—
=
w
S,
=
=
)
-
o
Y
-
o
Q.
c
Q
Q
L
>
o
m
>
Q.
=}
®
o)
—=h
=}
Q@

State Machine (150%)

()]

Feature-Oriented Domain Analysis

Feature Model

* Features are user-visible properties
« Compact representation of all products

eShop

/\

Catalog Payment Search Security
Bank Transfer | | Credit Card eCoins High Standard

T — — —_——

—® Mandatory
—O Optional

® or
(> Alternative

——%» Requires
<« > Excludes

Case Study Example: e-Commerce Shop

—
[
o
Q
>
®
Ry
02]
o
=
=}
o
—
1
-
o
—
@
S
=
o
m
3
o
-
w
O
>
a
o'
0
~—
>
(2]
7}
®
n
(2]
=
®
=)
~—
=
w
=%
=
s
)
-~
®
i)
-
o
o
c
o
Q
L
=3
®
m
>
Q
>
®
®
=1
=)
%)

»

Domain Analysis and Design

\L SelectPaymentMethod
n n
Domain Design
! Banktransfer) ProceedPaymentjvalidate
° o)
0 oins ProceedPayment/validate . /V/zlidation Val
SelectCreditCard Credit Card)_ProceedPayment/validate
* UML state chart

150% model

alid

Feature Mapping

« Maps features to transitions
 Considers feature's status

—
Q
Q
Q
2
@
s
2}
o
=
=}
Q.
~
1
-
o
—
@
3
=x
o
m
3
o
-
(2}
)
>
o
o'
(]
~—
>
()]
(7]
®
()]
(2]
=
)
>
~—
=
w
S,
=
=
)
-
o
Y
-
o
Q.
c
Q
Q
L
>
o
m
>
Q.
=}
®
o)
—=h
=}
Q@

_________________________ 1 —
:Domain Analysis: Feature Model (excerpt) | | Domain Design: 150% UML State Machine (excerpt) :
| . |
I .ee .o I I I
| Lo |
I \ /O\ | | Choose Payment Method Credit Card |
| Lo |
| . |
CreditCard |~ — — 9 High Standard | | | A - |

| L 7\ SelectCreditCard [1/
T . I
L === e S]

______________ Mapping: TRUE_-______,-..-“"

UML Class Diagram for Feature Mapping

El FeatureMapping

mappings
1.* feature EH Feature [@
H Mapping 1 ‘from featuremodel)
T id : EString
T name : EString elements
T featureValue : EBoolean
H Element [
N L ownedElement
1.% from uml)
0.*
0.1
owner

=
©
o
=
5
®
S
2}
o
>
=}
o)
~
1
-
o
S
®
S
=3
QL
m
3
o
-
7
©
S
o
o'
0
~—
>
n
7
®
n
0
3
®
S
~—
=
w
S,
=
-3
)
-
®
-
i
o
Q
c
o
Q
C
S
®
m
S
Q
5
®
®
.
5
Q@

Description of SPL Members

Configuration eshop

« Set of features /\

o Must not V|O|ate Catalog Payment Security
the model‘s constraints

Credit Card High

Example Configuration for our e-Commerce Webshop

M ate ri a I izat i 0 n Pay\an::IectPaymemMethod

* Derivation of a product = ::::::::::::::::::::%Jd
¢ CO n fi g u rati O n a p p I i ed to Credit Card'}_ProceedPaymentjvalidate

ChooseMethod _SelectECoins

SelectCreditCard

product line specification ot 150% model

SelectPaymentMethod
4 Payment

L ChooseM ‘Hod) SelectCreditCard . ("Credit Card|_ProceedPayment/validate . (Validation Valid
L >(}"

4/1/2014
100% model

I
Q
—+
=]
c
=5
—
Q
o
=
>
®
=
1
m
=h
o,
@
>
-
ol
2]
=
>
(@]
o
=
7]
=
—
3
Q
=
D
o
=
o
Qo
c
Q
—
C
>
®
2

Mutation Analysis

Uses

» Assess test quality by means
of fault detection capability

 Generate test data

Test Assessment
» Small changes to a program
« Mutated version is a mutant
« Failed test kills a mutant

« Mutation score = percentage
of killed mutants

Artifact

Apply Mutation Operators
Y

Artifact Mutants u

Execute Tests
Tests

Y

Test Results

Calculate Mutation Score

Y

Mutation Score

Traditional Mutation Process
for Test Assessment

—
Q
Q
2]
=}
@

Ry
02]
Q
=
=}
Q.
—

1
)
o
—
@
3
=
QL
m
3
o
-
(2}
Q
>
o
o'
(]
~—
>
(2}
(7]
[0}
()]
(2]
3
@
>
~—
=
w
S,
=
-3
)
-
@
i)
-
o
Q.
c
Q
2,
—
>
®
m
>

Q
=}
D
@
—=h
=}

«Q

—_
o

Possible errors in Model-Based Product Line Engineering
Mutation analysis

CONTRIBUTION

General Guidelines for Mutation Operators

1. Mutation categories should model potential faults

2. Only simple, first-order mutants should be generated.
Only one syntactic change is applied to the original
artifact.

3. Only syntactically and semantically legal mutants should
be generated (div. by 0)

4. Do not produce to many/equivalent mutants.

—
()
Q
@,
5
@
o
2}
o
>
=}
o)
—
1
-
o
—
@
S
=3
QL
m
3
o
-
7]
)
S
a
o'
)
~—
>
n
7]
®
)
n
3
@
S
~—
=
w
Qh
=
-3
o)
-
®
i)
-
o
Q
<
o
Q
-
5
®
m
S
Q
=]
®
@
3.
=]
Q

—_
N

Mutation Operators for Models

Four basic operations

1. Insert
— Adds superfluous elements to the model
2. Omit
— Removes a necessary element from the model

3. Change

— Changes a property of an element in the model
(e.g. changes a transition’s target state to another state)

4. Mix

— Extends, restricts, or both the behavior of affected products.

—
()
Q
@,
5
@
o
2}
o
>
=}
o)
—
1
-
o
—
@
S
=3
QL
m
3
o
-
7]
)
S
a
o'
)
~—
>
n
7]
®
)
n
3
@
S
~—
=
w
Qh
=
-3
o)
-
®
i)
-
o
Q
<
o
Q
C
5
®
m
S
Q
=]
®
@
3.
=]
Q

—_
w

Errors in Feature Mapping (1)

Omitted mapping: a necessary mapping is left out by its
entirety. Mapped elements will be part of every product
unless they are restricted by other features.

Superfluous mapping: a superfluous mapping is added,
such that a previously unmapped feature is now mapped to
some domain model elements. This may also include
adding a mapping for an already mapped feature, but with
inverted feature value.

Omitting a mapped element: a mapped model element is
missing from the set of mapped element in a mapping.
Subsequently, a previously mapped element will not only
be available in products which the said feature is part of,
but also in products unrelated to this feature.

—
Q
Q
2]
=}
@

o
02]
Q
=0
=}
Q.
—

1
o
o
—
@
3
=%
QL
m
3
o
-
(2}
Q
>
o
o'
(]
~—
>
(92}
(7]
[0}
()]
(2]
3
@
>
~—
=
w
S,
=
-3
)
-~
@
i)
-
o
Q.
c
Q
K2,
L
>
@
m
=)

Q
=}
®
@
=
=}

«Q

—
o

Errors in Feature Mapping (2)

Superfluously mapped element: an element is mapped
although it should not be related to the feature it is currently
mapped to.

Swapped feature: the associated features of two
mappings are mutually exchanged. Subsequently, behavior
Is exchanged among the two features and thus, affected
products offer different behavior than expected.

Inverted feature status: the bit-value of the feature value
attribute is flipped. The mapped elements of the affected
mapping become available to products where they should
not be available. At the same time, the elements become
unavailable in products where they should be.

—
Q
Q
2]
=}
@

o
02]
Q
=0
=}
Q.
—

1
o
o
—
@
3
=%
QL
m
3
o
-
(2}
Q
>
o
o'
(]
~—
>
(92}
(7]
[0}
()]
(2]
3
@
>
~—
=
w
S,
=
-3
)
-~
@
i)
-
o
Q.
c
Q
K2,
L
>
@
m
=)

Q
=}
®
@
=
=}

«Q

—_
()]

Mutation System for SPLs

Product Line Model

Apply Mutation Operators

A 4

Product Line Model
Mutants

Configurations

Materialize Product Models

A 4

Product Model
Mutants

Implement Products

Product Mutants

Backtrace Product Mutants to
Product Lines Model Mutants Execute Tests and Calculate Mutation Score

—
©
0
QL
2
®
S
2}
o
>
3,
o
~
1
.
o
—
@
=
=x
o
m
3
o
-
(2]
o
=
a
o'
o
~—
>
()]
(7]
®
o
»
3
®
>
~—
=
w
o
=
£
o
-
®
Y
-
o
Q
c
o
Q
L
=
o
m
=
Q.
2
®
®
=1
=)
Q@

SPL Mutation Score

—_
»

Operators for Mapping Models

Feature Mapping Operators

Delete Mapping (DMP): Permanently enables mapped elements.

Delete Mapped Element (DME): Permanently enables mapped
UML element

Swap Feature (SWP): Exchange a mapping's feature by the
following feature in a given list of features

Insert Mapped Element (IME): Removes UML element from all
unrelated products

Change Feature Value (CFV): Removes them from all related
products

Invalid Mutants

Chance of non-determinism: concurrently enabled transitions

Equivalence: DMP, DME products including the associated feature

—
Q
Q
=
=}
D

s
2}
(9]
=
=}
Q.
—

1
)
o
—
®
3
=x
QL
m
3
o
-
(2}
)
>
o
o'
(]
~—
>
(2}
(7]
D
()]
(2]
3
D
>
~—
=
w
S,
=
-3
V)
-
(0]
i)
-
o
Q.
c
Q
ML
L
>
D
m
>

Q
=}
(0]
(0]
—=h
=}

«Q

—
N

Operators for UML Models

UML State Chart Mutation

Delete Transition (DTR): Deletes a transition from a region in an UML state
machine.

Change Transition Target (CTT): Changes the target of a transition to
another state of the target state's region.

Delete Effect (DEF): Deletes the entire effect from a transition.

Delete Trigger (DTI): Deletes a transition's trigger. Only a single trigger is
deleted at a time, but every trigger is deleted once.

Insert Trigger (ITG): Copies an additional trigger to a transition. The trigger
is copied from a another transition within the same region.

Delete Guard (DGD): Deletes the entire guard of a transition
Change Guard (CGD): Changes a guard’s term by exchanging operators

Invalid Mutants

Chance of non-determinism: concurrently enabled transitions
Deletion of initial transition

Equivalence: deleted element was associated to a feature that is not in
contained in the product

—
Q
Q
2]
=}
@

Ry
02]
Q
=
=}
Q.
—

1
)
o
—
@
3
=x
QL
m
3
o
-
(2}
Q
>
o
o'
(]
~—
>
(2}
(7]
[0}
()]
(2]
3
@
>
~—
=
w
S,
=
-3
)
-~
@
i)
-
o
Q.
c
Q
2,
L
>
®
m
>

Q
=}
D
@
—=h
=}

«Q

—_
oo

,Case Studies” / Toy Examples

Ticket Machine
« Small model

Alarm System

 More signals

 Exposes many
configurations

eShop
 More complex state chart
« Still not realistic

Feature Model Complexity
B Ticket Machine M Alarm System eShop

42

20

Features Core-Features Configurations

State Chart Complexity

B Ticket Machine M Alarm System eShop
28

26
19 19 19
3 II
0 o
Transition Sub-Machines Signals

—
©
0
QL
2
®
S
2}
o
>
3,
o
~
1
.
o
—
@
=
=x
o
m
3
o
-
(2]
o
=
a
o'
o
~—
>
()]
(7]
®
o
»
3
®
>
~—
=
w
o
=
£
o
-
®
Y
-
o
Q
c
o
Q
L
=
o
m
=
Q.
2
®
®
=1
=)
Q@

—_
©

Results: Overview

Summarized Results for Feature Mapping Operators

eShop TicketMach AlarmSys

Products for testing 4 4 6
Product line mutants 30 28 53
Product mutants 096 56 278
Tests 13 9 12
Test steps 103 68 62
Tests executed 302 252 537
Failed Tests 20 30 37

Summarized Results for UML State Machine Operators

eShop TicketMach AlarmSys

=
©
o
=
5
®
S
2}
o
>
=}
o)
~
1
-
o
—
®
S
=3
o)
m
3
o
-
7
©
S
o
o'
0
~—
>
n
7
®
0
0
3
®
S
~—
=
w
o,
—
-3
)
-
®
Y
-
o
Q
c
o
Q
C
=
®
m
S
Q
5
®
®
3.
5
(@]

Products for testing 4 4 6
Product line mutants 122 148 08
Product mutants 478 296 585
Tests 13 Y 12
Test steps 103 68 62
Tests executed 1553 1332 1168
Failed Tests 283 272 123

N
o

Results: Scores per Operator

Mutation Scores for Feature Mapping Operators

Op. eShop TicketMach AlarmSys Acc
DMP 0.00 (4) 0.00(5) 0.00 (8) 0.00

 Low scores for DMP, DME,

DME 0.00(14) 0.00(8) 0.00(21) 0.00 ITG!

IME 75.00 (4) 40.00(5) 50.00 (8) 52.94 .

SWP 100.00 (4) 60.00(5) 625 (8) 70.59 « Transition coverage does not
CFV 100.00 (4) 100.00(5) 87.50 (8) 94.12 detect superfluous elements

2
Acc 36.67(30) 35.71(28) 30.19(53) 33.33 e For MC/DC and MCC holds

the same

Mutation Scores for UML State Chart Operators » Infectivity of sneak path

Op. eShop TicketMach AlarmSys Acc analysis:

DTR 89.29(28) 84.21(19) 63.16(19) 80.30 — Product-centered: removed
CTT 6429(28) 63.16(19) 36.84(19) 56.06 signals are not part of the
DEF 100.00(16) 82.35(17) 61.54(13) 8261 i)

DTI 82.61(23) 100.00(13) 94.12(17) 90.57 specification anymore.

ITG 20.83 (24) 27.78 (18) 16.67 (]8) 21.67 — Product |ine_Centered: two

DGD 0.00 (1) 4286(14) 50.00 (2) 41.18
CGD 100.00 (2) 68.75(48) 90.00(10) 73.33

Acc 69.67(122) 66.89 (148) 57.17 (98) 65.21

transition with the same
trigger leave the same state.

=
©
o
=
5
®
S
2}
o
>
=}
o)
~
1
-
o
—
®
S
=3
o)
m
3
o
-
7
©
S
o
o'
0
~—
>
n
7
®
0
0
3
®
S
~—
=
w
o
—
-3
)
-
®
Y
-
o
Q
c
o
Q
C
=
®
m
S
Q
5
®
®
3.
5
(@]

N
N

Conclusions

Overview of possible errors for feature models in model-
based product line engineering

We lifted mutation analysis to the product line-level
— Mutation operators
— Showed feasibility for three example SPLs

Transition coverage is insufficient for SPLs
— Accidentally enabled behavior will not detected

Future work
— Define model transformation for improving transition coverage
— Assess our SPL test design methods

—
Q
Q
2]
=}
@

Ry
02]
Q
=
=}
Q.
—

1
)
o
—
@
3
=x
QL
m
3
o
-
(2}
Q
>
o
o'
(]
~—
>
(2}
(7]
[0}
()]
(2]
3
@
>
~—
=
w
S,
=
-3
)
-~
@
i)
-
o
Q.
c
Q
2,
L
>
®
m
>

Q
=}
D
@
—=h
=}

«Q

N
N

Potential Errors and Test Assessment in
Software Product Line Engineering

A Mutation System for Variable Systems

Hartmut Lackner Martin Schmidt

hartmut.lackner@informatik.hu-berlin.de schmidma@informatik.hu-berlin.de

Graduate School METRIK
Humboldt-Universitat zu Berlin

April 18th 2015

