Using Model Checking to Generate Test

Cases for Android Applications

Ana Rosario Espada Maria del Mar Gallardo
Alberto Salmerén Pedro Merino

Universidad de Malaga, Spain

10th Workshop on Model-Based Testing

Table of Contents

Introduction

Test case generation with model checking
Architecture

Formal description of models

Case study

A Conclusions and future work

Introduction

4

m Smartphones have become ubiquitous computing devices

m Continuously and rapidly evolving technology

m Event-driven user interface, focusing on one task at a time

m With a traditional multi-tasking operating system underneath

Introduction

m Typical errors of concurrent software may happen
m Other bugs are inherent to mobile platforms, such as

m Incorrect implementation of lifecycle in apps or services
m Handling of unexpected events
m APl or device compatibility problems

m Different analysis techniques have been proposed

m Model checking ANDROID applications with JPF
m Testing, monitoring and runtime verification
m Automatic generation of random input events

Our proposal

=) -D-

m Model the possible user behaviors using state machines

m Nested state machines representing apps, screens, etc.
m Nondeterministic behavior within each state machine
m Composition of state machines

m Generate test cases by exploring this model
m Monitor and analyze the execution of the test cases
m Implemented for ANDROID

Test case generation with model checking

1 ‘ Setup 2 ‘ Verifier Generation

3 ‘ Verification

Property N
LTL Formula 7*‘ S ‘

P"?Pe“Y C Compiler ’7
Never Claim Automata T

L

Verifier
Executable

——

System Model | | | ’{’ o) Verifier
Promela i [pin) C Source Code

Property Violation
Counter-example

m We use the SPIN model checker to generate test cases

m SPIN is focused on the design and validation of computer
protocols, although it has been applied to many other areas

m Given a system specification written in PROMELA, SPIN can
check the occurrence of a property over all possible
executions and provide counterexamples

Test case generation with model checking

m Model — PROMELA specification
m Device —+ PROMELA process
m Multiple devices run concurrently
m Device state machine implemented as a loop
m Each loop branch corresponds to a transition
m Guard declares transition trigger (e.g. button press, swipe)
m Right hand side records transition and updates current state
m SPIN will explore exhaustively all possibilities (e.g. when
several guards are true at the same time) to generate all
possible test cases

Test case generation with model checking

Device A Device B
/Swipe /Message

/Buttonl /Button2

/Back

active proctype device_A() {

}

active proctype device_B() {

Test case generation with model checking

Device A Device B
/Swipe /Message
/Buttonl /Button2
/Back
mtype = { state_init, state_1, state_2, ... };

typedef Device { byte transitions[MAX_TR]; short index; bool finish; }
Device devices[DEVICES]
mtype state[DEVICES]

active proctype device_A() {
state[DEVA] = state_init;

devices[DEVA]. finish = true;
}

active proctype device_B() {
state[DEVB] = state_init;

devices[DEVB]. finish = true;

Test case generation with model checking

Device A Device B
/Swipe /Message
/Buttonl /Button2
/Back
mtype = { state_init, state_1, state_2, ... };

typedef Device { byte transitions[MAX_TR]; short index; bool finish; }
Device devices[DEVICES]
mtype state[DEVICES]

active proctype device_A() {
state[DEVA] = state_init;

do

:: state[DEVA] == state_init -> transition(DEVA, BUTTON_1); state[DEVA] = state_1
state[DEVA] == state_1 -> transition(DEVA, SWIPE); state[DEVA] = state_
state[DEVA] state_1 -> transition(DEVA, BUTTON_2); state[DEVA] = state_2
state[DEVA] state_2 -> transition(DEVA, MESSAGE); break
state[DEVA] == state_2 -> transition(DEVA, BACK); break

od;
devices[DEVA]. finish = true;
}

active proctype device_B() {
state[DEVB] = state_init;

devices[DEVB]. finish = true;

Architecture

Test Generator Engine

Modeling
Model.xml

Test Case Generation

Sequence.xml

Test Case Execution

Test Cases

Traces

Runtime Verification
Engine

m Test Generator Engine

m User models app user flows,
associates events with Ul controls
(extracted with UIAUTOMATORVIEWER)

m SPIN explores the model, generates an
XML test case for each possible flow

m Test cases are translated into JAVA
classes which use the UIAUTOMATOR
tool and run in the devices

m Runtime Verification Engine

m Monitors the execution of the test cases
m Implemented by the DRAGONFLY tool

Formal description of models

Device View
state machine state machine

m Mobile applications are modeled through the composition of
state machines, at different levels: view and device

m View state machines

m A view represents a screen in an application

m Only one view active in a device at the same time

m User interacts with the currently active view

m A transition may trigger another view to become active
m Device state machines

m Composed of one or more view state machines
m Handle transitions between view through connection states

Formal description of models

B — / —: transition relation of the view state machines M/M;
m —. transition relation that connects view state machines

m —, transition relation that connects device state machines
m Constructed from relations — / —; and —¢

m Transitions are labeled with the event required to fire them
m E.g. s 5 &: event e must be fired to transit from s to s’

m Test case: sequence of events

View state machines

M=(x,l,—,ECF)
m X finite set of states
m / C X set of initial states
m C C ¥: connection states (to a different state machine)
F C ¥: set of final states
E: set of user events
—C ¥ x E x X: labeled transition relation
I, C and F are mutually disjoint

E can be divided into two disjointed sets:

m E™: user events (e.g. button press, swipe)
m E£: system events (e.g. message reception)

View state machines

Given a view state machine M= (¥, — E, C, F), we define the
set Flow(M) = {sg =5 81 2 --- 2% s,|s9 € 1,5, € FUC} of all
sequences of transitions, allowed by M, starting at an initial state
of M, and ending at a final or connection state of M

m Given aflow ¢ = sy = --- 2% 5, € Flow(M), the sequence
of events (i.e. the test case) determined by ¢ is
test(p)=ey----- en

m Given a state machine M, the set of test cases allowed by
Mis TC(M) = {test(¢)|¢ € Flow(M)}

Composition of view state machines

m Given a set of state machines M; = (¥X;, I;, —;, E;, C;, Fi)
my= U?:1 Y

/= U?:1 I;

mE= U;’:1 E;

C= U,n:1 Ci
mF=U F

m & C E the set of call events that provoke the switch between

active view state machines

Connection relation

The connection of view state machines M;,..., M, is given by a
binary relation Z(My,---,M,) C C x & x [, that connects
connection states with initial states

m We denote 3-tuples (s;,e,s;) of Z(My,--- ,My) as s; S S

Composition of view state machines

Device state machine

Given a finite set of view state machines,
M; = (X, Il;,—i, Ej, Cj, F;), and a connection relation of
M, ..., My, the device state machine

D = Myl[| - [[[Mnl[|Z2(My, - - -, Mp)

is defined as the state machine (X x X* x &*,1, —4, E, F) where

m X" is the set of finite sequences of states of X, and &* is the
set of finite sequences of call events

m transition relation — 4 is defined by the following rules

Composition of view state machines

m The states of a device state machine are called
configurations
m A configuration is a 3-tuple (s, h, eh)
m s: the current state of the active view state machine
B h=s;- S-Sy the stack of states that constitutes the
history of created view state machines, where s; € C

B eh=ey-e---ep: the history of events that provoked the
creation of new view state machines, where ¢; € &

Composition of view state machines

m Transition within a view state machine:

e o
S—i S

R1. _
<S7 h? eh> %d <S/’ h? eh>

Composition of view state machines

m Transition to a new state machine, without reusing:

R2 se Ci,s 5,8, —reuse(e)

(s,h,eh) 24 (s, h-return(s),eh-e)
m Reusing, but no previous view state machine to reuse:

R3. seCy,sel,s 5 s',reuse(e),top(sy---Sp,j) =L

(s,h,eh) 24 (s, h-return(s),eh-e)
m Reusing:

seC,s cl,s 2. 8, reuse(e), top(sy - - S, J) = Sk

R4. !
(8,81:+-Sn,€1"+-€n) =g (Sk,S1"+"Sk_1,81 " Ek_1)

Composition of view state machines

m Flow continues with the previous view state machines, after
the current one finishes:

Fi return
R5. s € Fj,auto_return(e)

(s,h-s',eh-e) —q4 (s, h,eh)

m If auto_return(e) is false, the current configuration cannot
evolve

Composition of view state machines

m Given a device state machine Z:

The trace-based semantics determined by 2 (€(2)) is given
by the set of finite/infinite sequences of configurations (flows)
produced by the transition relation —4 from an initial state,
thatis, 0(2) = {(So,€.€) %4 (S1,hy,€h1)---|Sg € I}.

Given a flow ¢ = ¢ e—1>d Cy e—2>d Co--- € 0(2), the test case
determined by ¢ is the sequence of events
test(p)=e1-65---

The set of test cases determined by a set of flows .7 is
TC(7) = {test(t)|t € T}.

m Thus, a flow ¢ € 0(2) consists of a (finite or infinite)
sequence of view state machine flows connected through
connection states

Composition of device state machines

m Composition of several devices is carried out by interleaving

m Communication between devices is modeled with user
events in the sender (e.g. e*) and system events in the
receiver (e.g.)

m dh: set of system events produced but not yet consumed

m Sender transition:

e+
Co —d G

R6. _
(o, €y, dh) — g0 (C1,Ch,dh+{et})

m Receiver transition (cannot proceed until e™ € dh)

c) Ssg ¢y, et edh

(Co, Ch, dh) Zq)ar (Co,C),dh—{et})

R7.

Case study

m A single ANDROID device with two applications: Facebook
and YouTube
m A user comments on Facebook posts, and visits links that
play on the YouTube application
m Modeling
m Can be done during application development of afterwards
m State machines could be modeled with UML, then translated

into final the XML model
m We allow several levels of nesting: device — application —

view — state machine

Case study

/PlayPause
@
/PlayPause

/Back

, (? CommentView Facebook
Comment ®
-
/ClickLike ®
/ClickPublish
/SetCommentText
/SetYouTubeURL
, (? HomeView
HomeUpdate
/Comment)
/Swipe
/ClickYouTubelLink
YouTube
, 124 MovieView
i le®
ViewingMovieStateMachine
~Q Q)

Case study

<Application name="Facebook" package="com.facebook.android”">
<Views>
<View name="HomeView"” controlsFile="Home.xml" >
<StateMachines>
<StateMachine name="HomeUpdate">
<States><State name="S0"/><State name="S1"/></States>
<Transitions>
<Transition ID="1" event="Swipe” prev="" next="S0" type="Simple"/>
<Transition ID="2" event="Comment" prev="S0" next="S0"
through="CommentView" type="View"/>
<Transition ID="3" event="Swipe"” prev="S0" next="S1" type="Simple"/>
<Transition ID="4" event="ClickYouTubeLink"” prev="S0" next="S0"
through="ViewingMovieStateMachine"” type="StateMachine”"/>
<Transition ID="5" event="Swipe” prev="S1" next="S1" type="Simple"/>
<Transition ID="6" event="Comment"” prev="S1" next="S0Q"
through="CommentView" type="View"/>
<Transition ID="7" event="Swipe"” prev="S1" next=

o

type="Simple"/>

Case study

m State machine transition events must be associated with Ul
controls

m UIAUTOMATORVIEWER can extract control information from
live ANDROID applications

m Controls include which action they support, e.g. click, long
click or scroll

m Some controls can be enriched with parameters, e.g. for
test input generation

Case study

T sero uma

clickYouTubeLink

(O] | Comment
? ® HomeView
S
\] HomeUpdate

/Comment

/Swipe
/ClickYouTubeLink

/Swipe

<node index="0" text="" testGroup=""
<node index="0"
<node testGroup— c11cL1ke IsFixedValue="" PatternOrValue="" index="0"

text="Like" resource-id="id/feed_feedback_like_container” clickable="true"”
long-clickable="false"” password="false” ... />

Case study

m Test case generation with model checking: same principle
as before, with more layers

m XML model translated into PROMELA specification

m Device — process

m Application/view/inner state machines — inlines (“functions”)
m Nested state machines — nested inline calls

m Device processes contain the topmost state machines

m A state machine may call another one by calling their inline
m Limited exploration depth

m State must be stored in a stack (“backstack”) when
transitioning to a new state machine

m Backstack/transition history limit number of state machine
transitions/transitions in a single test case

m History part of global SPIN state: more test cases

m Test cases generated as XML

Case study

typedef Backstack { mtype states[MAX_BK]; short index; }

Backstack backstacks[DEVICES];

#define currentBackstack devices[device].backstack

#define currentState currentBackstack.states[currentBackstack.index]

active proctype device_219dcac41() {
if
true -> app_219dcac41_Facebook(D_219dcac41);
true -> app_219dcac41_YouTube(D_219dcac41);
fi;
devices[D_219dcac41].finished = true

3

inline statemachine_Facebook_HomeView_HomeUpdate (device) {
currentState = State_Facebook_HomeView_HomeUpdate_init;
pushToBackstack (device, State_Facebook_HomeView_HomeUpdate_init);

do
currentState == State_Facebook_HomeView_HomeUpdate_S@ ->
transition(device, VIEW_HomeView, 2);
view_Facebook_CommentView(device);
currentState = State_Facebook_HomeView_HomeUpdate_S@
currentState == State_Facebook_HomeView_HomeUpdate_S@ ->
transition(device, VIEW_HomeView, 4);
statemachine_YouTube_MovieView_ViewingMovieStateMachine(device);
currentState = State_Facebook_HomeView_HomeUpdate_S@
od;

popFromBackstack (device)

Case study

m Each XML test case is transformed into a JAVA class

m Subclass of UiAutomatorTestCase
m Compiled, installed and executed on the device

public class TestDevicel extends UiAutomatorTestCase {
// Transition 2 previous S@ next SO on view HomeView
public void TestFacebookComment2() throws UiObjectNotFoundException {
UiObject control = new UiObject(new UiSelector().
className ("android.widget.TextView"”).index (1) .textContains (" Comment"));
control.click();
)
// Transition 4: previous S@ next SO on view HomeView
public void TestFacebookclicYouTubelLink27 () throws UiObjectNotFoundException {
UiObject control = new UiObject(new
UiSelector().className("android.view.View").index(3));
control.click();
3
// Transition 1: previous next Y0 on view MovieView
public void TestYouTubeplaypause28() throws UiObjectNotFoundException {
UiObject control = new UiObject(new
UiSelector().className ("android.view.View").index (4));
control.click();

Case study

m Test generation results

m Backstack fixed to 4; change devices and max. transitions

m Device A has been assigned only the Facebook application
(although YouTube is reachable)

m Both devices are independent

Devices Config. Results

A B | Transitions | # Test Cases | Time | # States | State Size Memory

v 20 5641 | 1.0s 307234 84B| 156.8MB

v 26 111317 | 9.0s| 6063398 92B | 728.6MB
v 20 5660 | 1.0s 307493 84B | 156.8MB
v 26 111342 | 9.0s| 6063735 92B | 728.6MB

N 10 1872 | 7.0s| 4039337 100B | 560.3MB

v v 12 12180 | 52.3s | 28972472 108B | 3445.2MB

Conclusions

m Model-based testing approach for generating test caess for
ANDROID applications

m Models capture user behavior and interaction between
applications; realistic behaviors vs. random input events

m Flexible models built by composing state machines
m SPIN generates are possible test cases
m Adaptable to other mobile platforms

Future work

m Connect with our runtime verification monitor DRAGONFLY
m Include additional runtime information in the traces
m Analyze other properties, e.g. energy consumption

Thanks for your attention

Questions?

	Introduction
	Test case generation with model checking
	Architecture
	Formal description of models
	Case study
	Conclusions and future work

