
Using Model Checking to Generate Test
Cases for Android Applications

Ana Rosario Espada María del Mar Gallardo
Alberto Salmerón Pedro Merino

Universidad de Málaga, Spain

10th Workshop on Model-Based Testing

1/35

2/35

Table of Contents

1 Introduction

2 Test case generation with model checking

3 Architecture

4 Formal description of models

5 Case study

6 Conclusions and future work

3/35

Introduction

Smartphones have become ubiquitous computing devices
Continuously and rapidly evolving technology
Event-driven user interface, focusing on one task at a time
With a traditional multi-tasking operating system underneath

4/35

Introduction

Typical errors of concurrent software may happen
Other bugs are inherent to mobile platforms, such as

Incorrect implementation of lifecycle in apps or services
Handling of unexpected events
API or device compatibility problems

Different analysis techniques have been proposed
Model checking ANDROID applications with JPF
Testing, monitoring and runtime verification
Automatic generation of random input events

5/35

Our proposal

Model the possible user behaviors using state machines
Nested state machines representing apps, screens, etc.
Nondeterministic behavior within each state machine
Composition of state machines

Generate test cases by exploring this model
Monitor and analyze the execution of the test cases
Implemented for ANDROID

6/35

Test case generation with model checking

We use the SPIN model checker to generate test cases
SPIN is focused on the design and validation of computer
protocols, although it has been applied to many other areas
Given a system specification written in PROMELA, SPIN can
check the occurrence of a property over all possible
executions and provide counterexamples

7/35

Test case generation with model checking

Model→ PROMELA specification
Device→ PROMELA process

Multiple devices run concurrently
Device state machine implemented as a loop

Each loop branch corresponds to a transition
Guard declares transition trigger (e.g. button press, swipe)
Right hand side records transition and updates current state

SPIN will explore exhaustively all possibilities (e.g. when
several guards are true at the same time) to generate all
possible test cases

8/35

Test case generation with model checking

active proctype device_A () {

}

active proctype device_B () {

}

9/35

Test case generation with model checking

mtype = { state_init , state_1 , state_2 , ... };
typedef Device { byte transitions[MAX_TR]; short index; bool finish; }
Device devices[DEVICES];
mtype state[DEVICES];

active proctype device_A () {
state[DEVA] = state_init;

devices[DEVA]. finish = true;
}

active proctype device_B () {
state[DEVB] = state_init;
...
devices[DEVB]. finish = true;

}

10/35

Test case generation with model checking

mtype = { state_init , state_1 , state_2 , ... };
typedef Device { byte transitions[MAX_TR]; short index; bool finish; }
Device devices[DEVICES];
mtype state[DEVICES];

active proctype device_A () {
state[DEVA] = state_init;
do
:: state[DEVA] == state_init -> transition(DEVA , BUTTON_1); state[DEVA] = state_1
:: state[DEVA] == state_1 -> transition(DEVA , SWIPE); state[DEVA] = state_1
:: state[DEVA] == state_1 -> transition(DEVA , BUTTON_2); state[DEVA] = state_2
:: state[DEVA] == state_2 -> transition(DEVA , MESSAGE); break
:: state[DEVA] == state_2 -> transition(DEVA , BACK); break
od;
devices[DEVA]. finish = true;

}

active proctype device_B () {
state[DEVB] = state_init;
...
devices[DEVB]. finish = true;

}

11/35

Architecture

Test Generator Engine
User models app user flows,
associates events with UI controls
(extracted with UIAUTOMATORVIEWER)
SPIN explores the model, generates an
XML test case for each possible flow
Test cases are translated into JAVA
classes which use the UIAUTOMATOR
tool and run in the devices

Runtime Verification Engine
Monitors the execution of the test cases
Implemented by the DRAGONFLY tool

12/35

Formal description of models

Mobile applications are modeled through the composition of
state machines, at different levels: view and device
View state machines

A view represents a screen in an application
Only one view active in a device at the same time
User interacts with the currently active view
A transition may trigger another view to become active

Device state machines
Composed of one or more view state machines
Handle transitions between view through connection states

13/35

Formal description of models

−−→ /
−−→i : transition relation of the view state machines M/Mi

−−→c transition relation that connects view state machines
−−→d transition relation that connects device state machines

Constructed from relations −−→ /
−−→i and −−→c

Transitions are labeled with the event required to fire them
E.g. s e−→ s′: event e must be fired to transit from s to s′

Test case: sequence of events

14/35

View state machines

View state machine

M = 〈Σ, I, −−→,E,C,F〉
Σ: finite set of states
I ⊆ Σ: set of initial states
C ⊆ Σ: connection states (to a different state machine)
F ⊆ Σ: set of final states
E : set of user events
−−→⊆ Σ×E ×Σ: labeled transition relation
I, C and F are mutually disjoint

E can be divided into two disjointed sets:
E+: user events (e.g. button press, swipe)
E−: system events (e.g. message reception)

15/35

View state machines

Flow

Given a view state machine M = 〈Σ, I, −−→,E,C,F〉, we define the
set Flow(M) = {s0

e1−→ s1
e2−→ ·· · en−→ sn|s0 ∈ I,sn ∈ F ∪C} of all

sequences of transitions, allowed by M, starting at an initial state
of M, and ending at a final or connection state of M

Given a flow φ = s0
e1−→ ·· · en−→ sn ∈ Flow(M), the sequence

of events (i.e. the test case) determined by φ is
test(φ) = e1 · · · · ·en

Given a state machine M, the set of test cases allowed by
M is TC(M) = {test(φ)|φ ∈ Flow(M)}

16/35

Composition of view state machines

Given a set of state machines Mi = 〈Σi , Ii ,
−−→i ,Ei ,Ci ,Fi〉

Σ = ∪n
i=1Σi

I = ∪n
i=1Ii

E = ∪n
i=1Ei

C = ∪n
i=1Ci

F = ∪n
i=1Fi

E ⊆ E the set of call events that provoke the switch between
active view state machines

Connection relation

The connection of view state machines M1, . . . ,Mn is given by a
binary relation R(M1, · · · ,Mn)⊆ C×E × I, that connects
connection states with initial states

We denote 3-tuples (si ,e,sj) of R(M1, · · · ,Mn) as si
e−→c sj

17/35

Composition of view state machines

Device state machine

Given a finite set of view state machines,
Mi = 〈Σi , Ii ,

−−→i ,Ei ,Ci ,Fi〉, and a connection relation of
M1, . . . ,Mn, the device state machine

D = M1||| · · · |||Mn|||R(M1, · · · ,Mn)

is defined as the state machine 〈Σ×Σ∗×E ∗, I, −−→d ,E ,F 〉 where
Σ∗ is the set of finite sequences of states of Σ, and E ∗ is the
set of finite sequences of call events

transition relation −−→d is defined by the following rules

18/35

Composition of view state machines

The states of a device state machine are called
configurations
A configuration is a 3-tuple 〈s,h,eh〉

s: the current state of the active view state machine
h = s1 ·s2 · · ·sn: the stack of states that constitutes the
history of created view state machines, where si ∈ C
eh = e1 ·e2 · · ·en: the history of events that provoked the
creation of new view state machines, where ei ∈ E

19/35

Composition of view state machines

Transition within a view state machine:

R1.
s e−→i s′

〈s,h,eh〉 e−→d 〈s′,h,eh〉

20/35

Composition of view state machines

Transition to a new state machine, without reusing:

R2.
s ∈ Ci ,s

e−→c s′,¬reuse(e)

〈s,h,eh〉 e−→d 〈s′,h · return(s),eh ·e〉

Reusing, but no previous view state machine to reuse:

R3.
s ∈ Ci ,s′ ∈ Ij ,s

e−→c s′, reuse(e), top(s1 · · ·sn, j) =⊥
〈s,h,eh〉 e−→d 〈s′,h · return(s),eh ·e〉

Reusing:

R4.
s ∈ Ci ,s′ ∈ Ij ,s

e−→c s′, reuse(e), top(s1 · · ·sn, j) = sk

〈s,s1 · · ·sn,e1 · · ·en〉
e−→d 〈sk ,s1 · · ·sk−1,e1 · · ·ek−1〉

21/35

Composition of view state machines

Flow continues with the previous view state machines, after
the current one finishes:

R5.
s ∈ Fi ,auto_return(e)

〈s,h ·s′,eh ·e〉 −−→d 〈s′,h,eh〉

If auto_return(e) is false, the current configuration cannot
evolve

22/35

Composition of view state machines

Given a device state machine D :
1 The trace-based semantics determined by D (O(D)) is given

by the set of finite/infinite sequences of configurations (flows)
produced by the transition relation −−→d from an initial state,
that is, O(D) = {〈s0,ε,ε〉

e0−→d 〈s1,h1,eh1〉 · · · |s0 ∈ I}.
2 Given a flow φ = c0

e1−→d c1
e2−→d c2 · · · ∈ O(D), the test case

determined by φ is the sequence of events
test(φ) = e1 ·e2 · · ·

3 The set of test cases determined by a set of flows T is
TC(T) = {test(t)|t ∈T }.

Thus, a flow φ ∈ O(D) consists of a (finite or infinite)
sequence of view state machine flows connected through
connection states

23/35

Composition of device state machines

Composition of several devices is carried out by interleaving
Communication between devices is modeled with user
events in the sender (e.g. e+) and system events in the
receiver (e.g. e−)
dh: set of system events produced but not yet consumed
Sender transition:

R6.
c0

e+

−→d c1

〈c0,c′0,dh〉 e+

−→d ||d ′ 〈c1,c′0,dh +{e+}〉

Receiver transition (cannot proceed until e+ ∈ dh)

R7.
c′0

e−−→d ′ c′1, e+ ∈ dh

〈c0,c′0,dh〉 e−−→d ||d ′ 〈c0,c′1,dh−{e+}〉

24/35

Case study

A single ANDROID device with two applications: Facebook
and YouTube

A user comments on Facebook posts, and visits links that
play on the YouTube application

Modeling
Can be done during application development of afterwards
State machines could be modeled with UML, then translated
into final the XML model
We allow several levels of nesting: device→ application→
view→ state machine

25/35

Case study

26/35

Case study

<Application name=" Facebook" package ="com.facebook.android">
<Views >

<View name=" HomeView" controlsFile ="Home.xml" >
<StateMachines >

<StateMachine name=" HomeUpdate">
<States ><State name="S0"/><State name="S1"/></States >
<Transitions >

<Transition ID="1" event="Swipe" prev ="" next="S0" type=" Simple"/>
<Transition ID="2" event=" Comment" prev="S0" next="S0"

through =" CommentView" type="View"/>
<Transition ID="3" event="Swipe" prev="S0" next="S1" type=" Simple"/>
<Transition ID="4" event=" ClickYouTubeLink" prev="S0" next="S0"

through =" ViewingMovieStateMachine" type=" StateMachine "/>
<Transition ID="5" event="Swipe" prev="S1" next="S1" type=" Simple"/>
<Transition ID="6" event=" Comment" prev="S1" next="S0"

through =" CommentView" type="View"/>
<Transition ID="7" event="Swipe" prev="S1" next ="" type=" Simple"/>
...

27/35

Case study

State machine transition events must be associated with UI
controls
UIAUTOMATORVIEWER can extract control information from
live ANDROID applications
Controls include which action they support, e.g. click, long
click or scroll
Some controls can be enriched with parameters, e.g. for
test input generation

28/35

Case study

<node index ="0" text ="" testGroup =""
<node index ="0"

<node testGroup =" clicLike" IsFixedValue ="" PatternOrValue ="" index ="0"
text="Like" resource -id="id/feed_feedback_like_container" clickable ="true"
long -clickable ="false" password ="false" ... />

29/35

Case study

Test case generation with model checking: same principle
as before, with more layers
XML model translated into PROMELA specification

Device→ process
Application/view/inner state machines→ inlines (“functions”)

Nested state machines→ nested inline calls
Device processes contain the topmost state machines
A state machine may call another one by calling their inline

Limited exploration depth
State must be stored in a stack (“backstack”) when
transitioning to a new state machine
Backstack/transition history limit number of state machine
transitions/transitions in a single test case
History part of global SPIN state: more test cases

Test cases generated as XML

30/35

Case study

typedef Backstack { mtype states[MAX_BK]; short index; }
Backstack backstacks[DEVICES];
#define currentBackstack devices[device]. backstack
#define currentState currentBackstack.states[currentBackstack.index]

active proctype device_219dcac41 () {
if
true -> app_219dcac41_Facebook(D_219dcac41);
true -> app_219dcac41_YouTube(D_219dcac41);
fi;
devices[D_219dcac41]. finished = true

}

inline statemachine_Facebook_HomeView_HomeUpdate(device) {
currentState = State_Facebook_HomeView_HomeUpdate_init;
pushToBackstack(device , State_Facebook_HomeView_HomeUpdate_init);
do
:: currentState == State_Facebook_HomeView_HomeUpdate_S0 ->

transition(device , VIEW_HomeView , 2);
view_Facebook_CommentView(device);
currentState = State_Facebook_HomeView_HomeUpdate_S0

:: currentState == State_Facebook_HomeView_HomeUpdate_S0 ->
transition(device , VIEW_HomeView , 4);
statemachine_YouTube_MovieView_ViewingMovieStateMachine(device);
currentState = State_Facebook_HomeView_HomeUpdate_S0

...
od;
popFromBackstack(device)

}

31/35

Case study

Each XML test case is transformed into a JAVA class
Subclass of UiAutomatorTestCase
Compiled, installed and executed on the device

public class TestDevice1 extends UiAutomatorTestCase {
// Transition 2 previous S0 next S0 on view HomeView
public void TestFacebookComment2 () throws UiObjectNotFoundException {

UiObject control = new UiObject(new UiSelector ().
className (" android.widget.TextView ").index (1).textContains (" Comment "));

control.click();
}
// Transition 4: previous S0 next S0 on view HomeView
public void TestFacebookclicYouTubeLink27 () throws UiObjectNotFoundException {

UiObject control = new UiObject(new
UiSelector ().className (" android.view.View").index (3));

control.click();
}
// Transition 1: previous next Y0 on view MovieView
public void TestYouTubeplaypause28 () throws UiObjectNotFoundException {

UiObject control = new UiObject(new
UiSelector ().className (" android.view.View").index (4));

control.click();
}

}

32/35

Case study

Test generation results
Backstack fixed to 4; change devices and max. transitions
Device A has been assigned only the Facebook application
(although YouTube is reachable)
Both devices are independent

Devices Config. Results
A B Transitions # Test Cases Time # States State Size Memory
X 20 5641 1.0 s 307234 84 B 156.8 MB
X 26 111317 9.0 s 6063398 92 B 728.6 MB

X 20 5660 1.0 s 307493 84 B 156.8 MB
X 26 111342 9.0 s 6063735 92 B 728.6 MB

X X 10 1872 7.0 s 4039337 100 B 560.3 MB
X X 12 12180 52.3 s 28972472 108 B 3445.2 MB

33/35

Conclusions

Model-based testing approach for generating test caess for
ANDROID applications
Models capture user behavior and interaction between
applications; realistic behaviors vs. random input events
Flexible models built by composing state machines
SPIN generates are possible test cases
Adaptable to other mobile platforms

34/35

Future work

Connect with our runtime verification monitor DRAGONFLY

Include additional runtime information in the traces
Analyze other properties, e.g. energy consumption

Thanks for your attention

Questions?

35/35

	Introduction
	Test case generation with model checking
	Architecture
	Formal description of models
	Case study
	Conclusions and future work

