
A.K. Petrenko, B.-H. Schlingloff, N. Pakulin (Eds.):
Tenth Workshop on Model-Based Testing (MBT 2015)
EPTCS 180, 2015, pp. 57–72, doi:10.4204/EPTCS.180.4

c© Hartmut Lackner & Martin Schmidt

Potential Errors and Test Assessment in
Software Product Line Engineering

Hartmut Lackner
Humboldt-Universität zu Berlin

Germany
lackner@informatik.hu-berlin.de

Martin Schmidt
Humboldt-Universität zu Berlin

Germany
schmidma@informatik.hu-berlin.de

Software product lines (SPL) are a method for the development of variant-rich software systems.
Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possi-
ble products. Different approaches exist for testing SPLs, but there is less research for assessing the
quality of these tests by means of error detection capability. Such test assessment is based on error
injection into correct version of the system under test. However to our knowledge, potential errors in
SPL engineering have never been systematically identified before.

This article presents an overview over existing paradigms for specifying software product lines
and the errors that can occur during the respective specification processes. For assessment of test
quality, we leverage mutation testing techniques to SPL engineering and implement the identified
errors as mutation operators. This allows us to run existing tests against defective products for the
purpose of test assessment. From the results, we draw conclusions about the error-proneness of the
surveyed SPL design paradigms and how quality of SPL tests can be improved.

1 Introduction

Software product line (SPL) engineering is an emerging method for the development of variant-rich
software systems. Based on a SPL specification single products can be configured and derived. SPL
engineering is a systematic and planned process to reuse software artifacts most efficiently [8]. This also
includes quality assurance, where one of the most important ones is testing. But testing a SPL is different
from testing non-variable systems and thus is investigated intensively [27, 11, 28, 21]. Challenges in
testing SPLs are the selection of products for testing and the design of tests from the SPL’s specification.

Though there are many methods proposed for testing a product line, until now, quality assessment of
tests was limited to mutating individual products of the SPL. This approach has two major drawbacks:
first, developers can introduce errors on all kinds of artifacts, not only on final products specifications.
For better understanding we analyze different design paradigms for the specification of products from a
SPL and the errors that can occur during the respective design processes. From the results, we developed
mutation operators for variability models, and domain models that mimic possible faults in these models.

Secondly, the selection of products and subsequently its mutations is biased by the available tests,
since only products for which tests are available will be tested. Therefore, mutation analysis assesses
the quality of the tests for particular products, but not for the whole SPL. In contrast, we define a mu-
tation system and operators on the domain engineering-level. This enables us to assess the test quality
independently from the tested products. Subsequently, the test quality over the complete SPL is assessed.

The remainder of this article is structured as follows: In Section 2 we summarize the foundations of
SPL engineering and test assessment. In Sec. 3 we define and classify kinds of errors. We present our
SPL test assessment system and the evaluation of three examples in Sec. 4. Eventually, we show related
work in Sec. 5 and conclude in Sec. 6.

http://dx.doi.org/10.4204/EPTCS.180.4

58 Potential Errors and Test Assessment in Software Product Line Engineering

Domain Engineering

Application Engineering

Domain Analysis
[Feature Model]

Domain Model
[UML]

Configurations

Products

materialize

conforms to

Mapping/Delta
Model

Figure 1: Process of SPL engineering

Search

eShop

Catalog

Credit Card eCoinsBank Transfer

Payment Security

High Standard

Mandatory Requires

Optional ExcludesAlternative

Or

Figure 2: A feature model for the eShop example.

2 Preliminaries

In this section, we present the foundations that our work is based on. First, we give a short introduction
for model-based product line engineering. The second part is about mutation analysis. The third part
deals with potential errors and mutation in software development.

2.1 Model-based Product Line Engineering

Individual customer expectations and the reuse of existing assets in a product’s design are two driving
factors for the emergence of product line engineering: increasing the number of product features while
keeping system engineering costs at a reasonable level. In terms of software engineering, a SPL is a set
of related software products that share a common core of software assets (commonalities), but can be
distinguished (variabilities) [29].

The definition and realization of commonalities and variabilities is the process of domain engineer-
ing. Actual products are built during application engineering (cf. fig. 1). Here, products are built by
reusing domain artifacts and exploiting the product line variability.

Like many methodologies, SPL engineering can be supported by model-based abstractions such as
feature models. Feature models offer a way to overcome the aforementioned challenges by facilitating
the explicit design of global system variation points [18]. In consequence, variation points are not spread
across one or multiple domain models anymore, but instead linked to one core of variability description.

A feature model has a tree structure in which a feature can be decomposed into sub-features. Fig. 2
shows an example feature model, that will also be used as an example in section 4. A parent feature can
have the following relations to its sub-features: (a) Mandatory: child feature is required, (b) Optional:
child feature is optional, (c) Or: at least one of the children features must be selected, and (d) Alternative:
exactly one of the children features must be selected. Furthermore, one may specify additional (cross-
tree) constraints between two features A and B: (i) A requires B: the selection of A implies the selection
of B, and (ii) A excludes B: both features A and B must not be selected for the same product.

A feature model captures the system’s variation points in a concise form. Its elements, however, are
only symbols [9]. Their semantics has to be provided by mapping them to models with semantics. Such
a mapping can be defined using an explicit mapping model. A mapping model consists of relations from
feature model elements to domain model elements. We refer to the tuple of feature model, mapping
model, and domain model as SPL specification.

Product models or code can be materialized from the SPL specification by providing a configura-
tion. A configuration assigns a valuation to every feature in the feature model, denoting the presence or

Hartmut Lackner & Martin Schmidt 59

- Feature A

- Feature B

- Feature C

- Feature D

+ Feature A

+ Feature B

+ Feature C

a) b)

c) + Feature A

+ Feature B

- Feature C

- Feature D

in�uenced by

Delta modules

Figure 3: Negative (a), positive (b) variability (based
on [13]) and delta modeling (c)

 150% UML State Machine (excerpt)

Credit Card High

... ...

Mapping: TRUE

Standard

 Feature Model (excerpt)

SelectCreditCard []/

Choose Payment Method Credit Card

Figure 4: SPL Design with Negative Variability.

absence of the mapped elements. The valuation must not violate the constraints imposed by the feature
model.

Based on this setup three paradigms have established for specifying SPLs. These paradigms will be
briefly introduced as follows.

2.1.1 Negative Variability

In this case, the domain model is designed in terms of a so called 150% model. A 150% model contains
every element that is used in at least one product configuration and, thus, subsumes every possible prod-
uct [14] (Fig. 3a). We consider the combination of a feature model, a mapping model, and a UML model
as SPL specification.

Each mapping in the mapping model maps a single feature to a set of transitions. Additionally,
each mapping has a Boolean flag that indicates whether the mapped model elements are part of the
product when the feature is selected (true) or unselected (false). Figure 4 shows an excerpt of the eShop
specification, where parts of the feature model are depicted in the upper half and parts of the state
machines payment process are shown in the lower half. In between, we find a mapping, denoted by a
dotted edge, from feature ”Credit Card” to the transition labeled as ”SelectCreditCard[]/”.

2.1.2 Positive Variability

In contrast to negative variability to design the domain model, positive variability starts with a minimal
core that contains features that are common to all possible products. From this starting point additional
features will be added by a designer (Fig. 3b).

2.1.3 Delta Modeling

Designing products in SPL engineering using positive or negative variability is called feature-oriented.
In contrast to these paradigms, there is another approach which is referred to as delta modeling (also
delta-oriented programming) [30]. Using delta modeling for the purpose of designing SPLs, two parts
are needed. The first is a core module, that comprises a set of features that represent a valid product.
The second part is a set of delta modules which specify changes that will be applied to the core module.
These changes can either be the construction (add) or destruction (remove) of features (Fig. 3c).

60 Potential Errors and Test Assessment in Software Product Line Engineering

2.2 Mutation Analysis

Mutation analysis (also mutation testing) as introduced by DeMillo et al. [10] is a error-based testing
technique with the intended purpose to assess the quality of tests that will be applied to a system.

The process of mutation analysis seeds errors into software by creating modified versions of the
original software, where each created version contains one error. After that existing test cases are used to
execute the defective versions (mutants) with the goal to distinguish the defective ones (to kill a mutant)
from the original software. The ratio of killed mutants to generated mutants is called mutation score, that
will be computed after the execution of all test cases. The main goal of the test designer is to achieve the
highest possible mutation score [26, 17].

Though mutation operators are applied to introduce errors, there is the chance, that the resulting
mutant offers the same behavior like the original. This type of mutants are referred as hidden mutants.
Although the detection of hidden mutants is an undecidable problem, hidden mutants are supposed to be
removed from the mutation analysis before scoring is performed [17].

According to Jian and Harman [16] we can distinguish multiple kinds of mutants that can be created.
The simplest ones and already mentioned are first-order mutants that have only one introduced error.
Even if first-order mutants can be killed during the process of mutation testing, this does not guarantee
that a combination of two (or even more) mutants will also be detected by the test suite. Such combined
mutants are referred as higher-order mutants.

2.3 Potential Errors and Mutations

In mutation analysis, defective software versions are derived from a set of potential errors a human can
make during software development. Potential errors are implemented as mutation operators, which are
applied to the original software for introducing errors. The mutation operator’s design affects the validity
of the resulting mutation scores and the costs for testing by means of the amount of mutants to create
and the number of tests to execute against them. Thus, we apply the following four guiding principles
for creating mutation operators [5, 34]:

1. Mutation categories should model potential error. It is important to recognize different types of
error. In fact, each mutation operator is designed to model errors belonging to the corresponding
error class.

2. Only simple, first-order mutants should be generated. These mutants are produced by making ex-
actly one syntactic change to the original specification. This restriction is justified by the coupling
effect hypothesis which says that the test sets that detect simple mutants will also detect more
complex mutants [23].

3. Only syntactically and semantically correct mutants should be generated. Some mutations may
result in an illegal expression, such as division by 0. Such mutants should not be generated.

4. Do not produce too many mutants. This includes some practical restrictions. For example, do not
replace a relational connector with its opposite, if for other mutants a term negation operator is
applied, since both mutants are semantically equivalent.

From other mutation systems [4, 1, 12], we identified the following general categories for model-
based mutation operators:

1. Model element deletion: a model designer forgets to add a model element, e.g. a feature, a map-
ping, or a transition

Hartmut Lackner & Martin Schmidt 61

2. Model element insertion: a model designer inserts a superfluous model element, e.g. a feature, a
mapping, or a transition

3. Property change: a model designer chooses a wrong value for a property of a model element,
e.g. mandatory feature instead of optional, inverse value for a feature’s status, or wrong transition
target.

For each model element-type, like mappings, transitions, guards, etc., one can check for applicable
categories and implement mutation operators accordingly.

3 Potential Errors in Model-Based Product Line Engineering

In this contribution, we focus on errors in the feature mapping. The feature mapping has a major impact
on the outcome of the product line’s materializations, however the design is complex and error-prone.
We identify potential errors in a systematic way by checking each modeling paradigm for possibilities
to add superfluous or omit necessary elements or change the value of an element’s attribute. For each
potential error we discuss its effects onto the materializations.

Furthermore, according to the consequences of each errors for affected products, we assign one of
the following four types to each potential error:

add extends the behavior of affected products.

omit restricts the behavior of affected products.

alter extends and restricts the behavior of some products.

mix extends, restricts, or both the behavior of affected products, depending on the model’s contents.

Negative Variability

In the negative variability paradigm, we identify the following model elements for potential errors from
the feature mapping model: mappings, their attribute feature value, mapped feature, and the set of
mapped elements. The errors which can be made on these model elements and their effects are as
follows:

N1) Omitted mapping: a necessary mapping is left out by its entirety. Mapped elements will be part of
every product unless they are restricted by other features. As a result, some or all products unrelated to
the particular feature will include superfluous behavior. Products including the mapped feature are not
affected, since the behavior was enabled anyway.

N2) Superfluous mapping: a superfluous mapping is added, such that a previously unmapped feature is
now mapped to some domain model elements. This may also include adding a mapping for an already
mapped feature, but with inverted feature value. Adding a mapping with feature value set to true results
in the removal of elements from products unrelated to the mapped feature. Contrary, adding a mapping
with feature value set to false removes elements from any product which the mapped feature is part of.
In any case the behavior of at least some products is reduced.

N3) Omitting a mapped element: a mapped model element is missing from the set of mapped element
in a mapping. Subsequently, a previously mapped element will not only be available in products which
the said feature is part of, but also in products unrelated to this feature. As a result, some products offer
more behavior than they should or contain unreachable model elements.

62 Potential Errors and Test Assessment in Software Product Line Engineering

N4) Superfluously mapped element: an element is mapped although it should not be related to the feature
it is currently mapped to. As a result the element becomes unavailable in products which do not include
the associated feature. The product’s behavior is hence reduced.

N5) Swapped feature: the associated features of two mappings are mutually exchanged. Subsequently,
behavior is exchanged among the two features and thus, affected products offer different behavior than
expected. The result is the same as exchanging all mapped elements among two mappings.

N6) Inverted feature status: the bit-value of the feature value attribute is flipped. The mapped elements
of the affected mapping become available to products where they should not be available. At the same
time, the elements become unavailable in products where they should be. For example, if the feature
value is true and is switched to false, the elements become unavailable to products with the associated
feature and available to any product not including the said feature. Of course, other feature mappings to
the same element(s) must still be considered.

Positive Variability

In SPL modeling with positive variability, a mapping is a bijection between features and modules com-
posed from domain elements. Potential errors in the feature mapping models can be made at: mappings,
mapped feature, and mapped module. We identify the following potential errors:

P1) Omitted mapping: a necessary mapping is missing in its entirety. This appears to us to be an
unrealistic scenario, since one can automatically check for all modules being mapped to some feature.
But if we consider the case of a missing mapping, products with the associated feature would be missing
the modules functionality.

P2) Superfluous mapping: a superfluous mapping is added. Similar to the above, this is an unrealistic
scenario for same reason: all modules should be mapped exactly once. In a model-based environment,
this check should be easily automatable. However, if adding a superfluous mapping is possible, more
behavior becomes enabled in products containing the mapping’s feature.

P3) Swapped modules: the associated modules of two mappings are mutually exchanged. As a result,
all products containing one of the two features, but not the other, offer not the expected behavior. In
contrast, all products containing none or both features behave as expected.

P4) Swapped features: the associated features of two mappings are mutually exchanged. The result is
the same as above for swapped modules.

Delta Modeling

For other paradigms, like delta-modeling [30], we make similar observations. In contrast to positive
variability models, delta-oriented variability models start from an actual core product, instead of a base
module. From this on, only the differences from one product to another are defined by deltas. In delta-
modeling, mapping multiple features to the same delta is allowed. A delta may add elements to and
remove elements from the core product at the same time. As potential points of errors in delta-modeling
we identify deltas, a delta’s set of mapped features, its set of removed elements from the base product,
and its set of added elements.

D1) Omitted delta: the product line model misses an entire delta definition. Products containing features
of the missing delta may lack behavior or offer to much of it. This depends on whether the delta removes
and/or adds elements to the base product.

Hartmut Lackner & Martin Schmidt 63

D2) Superfluous delta: an unnecessary delta is added. As a result, products containing the associated
feature(s) will offer additional behavior. Also, affected products might lack behavior if the delta removes
elements.

D3) Omitted feature: a necessary feature from the set of mapped features is missing. If no feature is
left, the delta is not mapped at all which can be statically verified. If otherwise the set still contains at
least one feature, any product containing the current set of mapped features but not the missing feature,
offers too much or too few behavior. In some cases, the set of mapped features and the affected elements
may collide with another delta, which is again statically verifiable.

D4) Superfluous feature: an additional feature is added to a delta’s already complete set of mapped
features. As a result, the delta will be available in less products. If the added feature mutually excludes
one of the already mapped features, the delta will be applicable to no product at all. A static check can be
used to validate that a set of features is satisfiable by some product. Only products containing the correct
set of features but not the superfluous, are affected by this error. Affected products may offer more or
less behavior.

D5) Omitted base element: a delta’s set of base elements is missing an element. In consequence, too
few elements are removed from the core product by this delta to match the product’s specification. Thus
any product containing the features from this delta offers too much behavior.

D6) Superfluous base element: a delta’s set of base elements contains additional elements. This will
remove more elements than necessary from the products affected by this delta. Hence, these products
offer too few behavior.

D7) Omitted delta element: an element from the set of delta elements in a delta is missing. As a result,
any product containing the delta’s features offers less behavior than specified.

D8) Superfluous delta element: an element from a delta’s set of delta elements is missing. In conse-
quence, the products containing the delta’s features offer more behavior than specified.

4 Product Line Test Assessment

As laid out in section 3, other errors can be made in model-based SPL engineering than in contrast to
non-variable systems engineering. Furthermore, current test design methods and coverage criteria are
not prepared to deal with these errors. To show the validity of our argument, we propose a mutation
system for SPLs. It is specifically designed to assess test quality, by means of error detection capability
(EDC), for the whole product line rather than for single systems. But mutation systems for SPLs need
novel mutation operators. The reason for this is the separation of concerns in SPL engineering, where
variability and domain engineering are split into different phases and models.

Mutation operators defined for non-variant systems cannot infer mutants including modules from
other products, since this information is only available during domain engineering. However, we expect
a high-quality test suite to detect such errors. Hence, we also propose new mutation operators based on
the potential errors, we identified in section 3. For conciseness, we only consider potential errors from
negative variability modeling for implementation.

4.1 Mutation System for SPLs

Performing mutation analysis on SPL tests is different from non-variant system tests, since in contrast
to conventional mutation systems, a mutated SPL specification is not executable per se. Thus, testing

64 Potential Errors and Test Assessment in Software Product Line Engineering

Product Line Specification
Product Line Specification

Mutants (a)

Product Specification
Mutants

Product Mutants

Apply Mutation Operators

Materialize Specification

Configurations (b)Test Suite

Select Configurations for Testing

Backtrace Product Mutants to
Product Lines Specification Mutants

Apply Configurations

Execute Tests and
Calculate Mutation Score

SPL Mutation Score

Figure 5: Mutation Process for SPLs

cannot be performed until a decision is made towards a set of products for testing. This decision depends
on the SPL test suite itself, since each test is applicable to just a subset of products.

In Figure 5, we depict a mutation process for assessing SPL test suites, which addresses this issue.
Independently from each other, we gain (a) a set of SPL specification mutants by applying mutation
operators to the SPL specification and identify (b) a set of configurations describing the applicable prod-
ucts for testing. We apply every configuration in (b) to every mutant in (a), which returns a new set of
product specification mutants. Any mutant structurally equivalent to the original product specification is
immediately removed and does not participate in the scoring. The specification mutants are easily mate-
rialized into product mutants and finally, tests are executed. Our mutation scores are based on the SPL
specifcation mutants, hence we established bidirectional traceability from any SPL specification mutant
to all its associated product mutants and back again. If a product mutant is killed by a test, we backtrack
its original SPL specification mutant and flag it as killed. The final mutation score is then calculated
from the killed and the overall number of SPL specification mutants.

4.2 SPL Mutation Operators

Here, we present mutation operators for feature mapping models with negative variability. Furthermore,
we enrich the mutation system by standard state machine operators and apply them on domain-level as
well. For each operator, we describe how it was identified and its notion. Also, we discuss potentially
invalid and hidden mutants resulting from each operator.

4.2.1 Feature Mapping

We design the mutation operators according to the potential errors identified in section 3. We do not
consider inserting superfluous mappings as in this case it remains unclear which and how many UML
elements should be selected for the mapping. We assume that this, if not carefully crafted, will lead to
mostly invalid mutants.

Delete Mapping (DMP) The deletion of a mapping will permanently enable the mapped elements, if
they are not associated to other features that constrain their enabledness otherwise. In our examples, no
invalid mutants were created. However, for product lines that make heavy use of mutual exclusion (Xor
and excludes) this does not apply. The reason for this are competing UML elements like transitions that
would otherwise never be part of the same product. Multiple enabled and otherwise excluding transitions
are possibly introducing non-determinism or at least unexpected behavior.

Some products mutants created with this operator might behave equivalent to an original product. This
is the case for all products that include the feature for which the mapping was deleted.

Hartmut Lackner & Martin Schmidt 65

Delete Mapped Element (DME) This operator deletes a mapped UML element from a mapping in the
feature mapping model. It resembles the case, where a modeler forgot to map a UML element that should
have been mapped.
Similar to the delete mapping operator, this operator may yield non-deterministic models, where other-
wise excluding transitions are concurrently enabled. Product mutants equivalent to the original product
model can be derived, if the feature associated to the deleted UML reference is part of the product.

Insert Mapped Element (IME) This operator inserts a new UML element to the mapping. This is the
contrary case to the operators defined before, where mappings and UML elements were removed. How-
ever, inserting additional elements is more difficult than deleting them, since a heuristic must be provided
for creating such an additional element. We decided to copy the first UML element reference from the
subsequent mapping. If there are no more mappings, we take the first mapping. This operator is not
applicable if there is just one mapping in the feature mapping model.
Again, there is a chance of creating invalid mutants: If a UML element reference is copied from a
mutually excluded mapping, the resulting model may be invalid due to non-determinism.

Swap Feature (SWP) Swapping features exchanges the mapped behavior among each other. This oper-
ator substitutes a mapping’s feature by the following mapping’s feature and vice versa. The last feature
to swap is exchanged with the very first of the model.
Non-deterministic behavior and thus invalid models may be designed by this operator. This is due to the
fact that the mutation operator may exchange a feature from a group of mutually exclusive features by
an unrestricted feature. In consequence, the previously restricted feature is now independent, while the
unrestricted feature joins the mutually exclusive group. This may concurrently enable transitions which
results in non-deterministic behavior.

Change Feature Value (CFV) This operator flips the feature value of a mapping. A modeler may have
selected the wrong value for this boolean property of each mapping.
The operator must not be applied to a mapping, if there is a second mapping with the same feature, but
different feature value. Otherwise, there will be two mappings for the same feature with the same feature
value, which is not allowed for our feature mapping models.
This operator may yield invalid mutants, if it is applied to a mapping that excludes another feature. In
that case, two otherwise excluding UML elements can be present at the same time, which may result in
invalid models, e.g. two default values assigned to a single variable or concurrently enabled transitions.

4.2.2 UML State Machine

In the past 20 years, many mutation operators for transition-based systems were defined [12, 24, 2, 3].
Here, we limit ourselves to the design of operators based on transitions as these may have the strongest
impact on the behavior of the SUT. We do not design operators that can be mimicked by the combination
of two of them. In particular, we do not consider the exchange of an element by another, since this can
easily be mimicked by removing and inserting the removed element at another point in the model.

We identified five targets for mutation: (i) remove the entire transition, change its (ii) target state, as
well as mutating its (iii) triggers, (iv) guard, and (v) effect. The latter three can be mutated according
to the three defined categories delete, add and change. Though in this contribution omitted the category
change for simplicity.

For all mutants created by the here presented operators, there is a chance of materializing mutants
behaving equivalent to the original product. This is the case, when the mutated element is part of disabled
feature. Of course, hidden mutants – if detected – will be excluded from the scoring.

66 Potential Errors and Test Assessment in Software Product Line Engineering

In general, we will not apply any class mutation to our UML state machines [19]. The system’s
logic is designed in the state machine diagrams, while the classes are merely containers for variables and
diagrams.

Delete Transition (DTR) Deletes a transition from a region in a UML state machine. This operator might
create invalid UML models, if not enough transitions remain on a pseudo-state (fork, join, junction, and
choice) [22, p.555].

Change Transition Target (CTT) Changes the target of a transition to another state of the target state’s
region. This operator is only applicable if the region has more than one state.

Delete Effect (DEF) Deletes the entire effect from a transition. We consider sending signals to the
environment or other components to be part of a transition’s effect, hence they are deleted as well.

Delete Trigger (DTI) Deletes a transition’s trigger. Only a single trigger is deleted at a time, but every
trigger is deleted once.

Insert Trigger (ITG) Copies an additional trigger to a transition. The trigger is copied from another
transition within the same region. This may lead to non-deterministic behavior if both transitions, the
source transition of the trigger and the mutated transition, are outgoing transitions of the same state.

Delete Guard (DGD) Deletes the entire guard of a transition. This may lead to non-deterministic be-
havior of the state machine, if another transition is enabled simultaneously. Furthermore, in the case
of transitions without triggers and where source and target are the same state, this operator leads to in-
finite looping of the state machine over the mutated transition. The reason for this behavior is UML’s
run-to-completion semantic, where an enabled transition without triggers is immediately traversed.

Change Guard (CGD) Changes a guard’s term by exchanging operators or substituting boolean literals
by their inverse. Our CGD operator supports 30 different arithmetic, relational, bitwise, compound
assignment, and logic operators. Furthermore, literal ”null” is exchanged by ”this”.
This may cause mutants with non-deterministic behavior, whenever two transition become concurrently
enabled due to the manipulation of one of their guards.

4.3 Evaluation

We created three example product lines for performing a mutation analysis on them. We designed the
test suite for each example automatically by applying model-based testing techniques. In particular, we
used product line-centered test design (PLC) from our SPLTestbench as defined in [20], where tests are
designed from the SPL specification. In contrast to product-centered test approaches, where tests are
designed from selected product specifications, the PLC approach selects products for testing after the
test design phase. This improves coverage of the state machine, since the coverage criteria are applied
onto the whole SPL specification.

We chose all-transitions coverage for selecting the tests. A test generator then automatically designed
the tests and outputs XML-documents. From the tests, SPLTestbench selected variants for testing and
materialized them from the mutated SPL specifications into product specification mutants.

Since our examples lack implementations, we decided to generate code from the product specification
mutants and run the tests against them. Therefore, we developed and employed a code generator for
transforming individual product specifications into Java. Another transformator generates executable
JUnit code from the tests which we gained from the test generator. The mutation systems then collects
all the code artifacts, executes the tests against the product code, and finally reports the mutation scores

Hartmut Lackner & Martin Schmidt 67

for all tests and for every operator individually. All of the transformations above and the mutation system
are part of our SPLTestbench.

Generating code and tests from the same basis for testing the code is not feasible in productive
environments, since errors propagate from the basis to code and tests. However in our case, tests are
executed against code derived from mutated artifacts, which are different from the original.

4.3.1 Examples

Our examples represent three kinds of systems: an e-commerce shop (eShop), which makes heavy use
of signals but with only few guards, a ticket machine (TicketMach) that uses less signals and in contrast
more guards, and lastly, an alarm system (AlarmSys), which uses various signals and guards and is more
variant-rich than the other two case studies.

The eShop is a fictional example designed by ourselves, which is comprised of 10 features offering
20 different variants. A customer can browse the catalog of items, or if provided, use the search function.
Once the customer put items into the cart, he can checkout and may choose from up to three different
payment options, depending on the eShop’s configuration. The transactions are secured by either a
standard or high security server. A constraint ensures that credit card payment is only offered if the
eShop also implements a high security server.

The TicketMach example is adopted from Cichos et al. [7]. The functionality is as follows: a cus-
tomer may select tickets, pay for them, receive the tickets, and collect change. The feature model has a
root feature with three sub-features attached to it; all of them are optional with no further constraints, thus
it offers eight variants. Depending on the selected features, the machine offers reduced tickets, accepts
not only coins but also bills, and/or will dispense change.

From Cichos et al. [6] we also adopted and extended the AlarmSys example. Currently, it consists
of 12 features and offers 42 variants. The alarm may be set off manually or automatically by a vibration
detector. Both features are part of an or-group and, thus, at least one of the two features must be present in
every product. In the event of an alarm, a siren or a warning light will indicate the security breach. When
the vibration does not stop after a predefined period of time, the system optionally escalates the alarm by
calling police authorities and/or sending photos of evidence. Additionally to its alarming functionality,
the AlarmSys SPL provides a feature for taking a photo of any operator that configures the system for
security measures.

4.3.2 Results

We were able to assess the test quality for all three test suites derived from the examples. Here, we
present our results. For each mutation operator we measured the amount of detected mutants based on
the SPL specification. In addition, we assessed accumulated mutation scores for each example over all
mutation operators and vice versa, the accumulated results for each mutation operator over all examples.
The detailed results for feature mapping operators can be read from Table 1 and for UML operators from
Table 2.

Furthermore, we tracked for every example the number of original products selected for testing,
generated product line mutants, and materialized product mutants. Test-wise we counted tests, test steps
by means of stimuli and expected reactions in all tests, tests executed against all product mutants, and
the number of failed tests during test execution.

For the eShop example, SPLTestbench selected four products for testing. Independent from this, the
mutation system generated 30 product line mutants and 96 product mutants for the mapping mutation

68 Potential Errors and Test Assessment in Software Product Line Engineering

Table 1: Mapping Operator Scores per Mu-
tation Operator in % and Accumlated Scores
(Acc)

Op. eShop TicketMach AlarmSys Acc

DMP 0.00 (4) 0.00 (5) 0.00 (8) 0.00
DME 0.00 (14) 0.00 (8) 0.00 (21) 0.00
IME 75.00 (4) 40.00 (5) 50.00 (8) 52.94
SWP 100.00 (4) 60.00 (5) 62.5 (8) 70.59
CFV 100.00 (4) 100.00 (5) 87.50 (8) 94.12

Acc 36.67 (30) 35.71 (28) 30.19 (53) 33.33

Table 2: UML Operator Scores per Mutation
Operator in % and Accumlated Scores (Acc)

Op. eShop TicketMach AlarmSys Acc

DTR 89.29 (28) 84.21 (19) 63.16 (19) 80.30
CTT 64.29 (28) 63.16 (19) 36.84 (19) 56.06
DEF 100.00 (16) 82.35 (17) 61.54 (13) 82.61
DTI 82.61 (23) 100.00 (13) 94.12 (17) 90.57
ITG 20.83 (24) 27.78 (18) 16.67 (18) 21.67
DGD 0.00 (1) 42.86 (14) 50.00 (2) 41.18
CGD 100.00 (2) 68.75 (48) 90.00 (10) 73.33

Acc 69.67 (122) 66.89 (148) 57.17 (98) 65.21

Table 3: Summarized Results for Mapping Op-
erators

eShop TicketMach AlarmSys

Products for testing 4 4 6
Product line mutants 30 28 53
Product mutants 96 56 278
Tests 13 9 12
Test steps 103 68 62
Tests executed 302 252 537
Failed Tests 20 30 37

Table 4: Mutation Results for State Machine
Operators

eShop TicketMach AlarmSys

Products for testing 4 4 6
Product line mutants 122 148 98
Product mutants 478 296 585
Tests 13 9 12
Test steps 103 68 62
Tests executed 1553 1332 1168
Failed Tests 283 272 123

operators. For the state machine mutation operators it generated 122 product line mutants and 478
product mutants. Every test from the 13 tests for this example were executed against every suitable
mutant. This results in 302 test executions for the mutants created by the mapping mutation operator and
1553 test execution for state machine mutation operators. Ultimately, 20 tests for mapping operators and
283 tests for state machine operators failed, killing 69.67% and 36.67% of the mutants.

Analog to the eShop, we executed less tests and generated less product mutants for the feature map-
ping operators: 252 tests were executed against 56 product mutants. The tests yield an even lower
mutation score of 35.71% than for the eShop case study.

In case of the AlarmSys, we executed 537 tests against 278 product mutants created by the mapping
mutation operators and 1168 tests against 585 product mutants created by the state machine mutation
operators. Eventually, 37 and 123 tests failed, killing 30.19% and 57.17% of the mutants, respectively.
The results are summarized in Table 3 and 4.

5 Related Work

Mutation analysis for SPLs seems to be a rather new topic. To our knowledge, there is no publication
dealing with mutation operators on all model artifacts of a SPL specification. Though, Henard et al.
proposed two mutation operators for feature models based on propositional formulas in [15]. They
employ their mutation system for showing the effectiveness of dissimilar tests, in contrast to similar tests.
For calculating dissimilarity, the authors provide a distance metric to evaluate the degree of similarity
between two given products.

In contrast, mutation analysis for behavioral system specifications, e.g. finite state machines, is
established since two decades. Fabbri et al. introduced mutation operators for finite state machines

Hartmut Lackner & Martin Schmidt 69

in [12]. In addition to our operators, they also consider adding states and the exchange of elements
(event, guard, effect) by another. Belli and Hollmann provide mutation operators for multiple formalism:
directed graphs, event sequence graphs [2], finite state machines [25], and basic state charts [3]. They
conclude, that there are two basic operations from which most operations can be derived: omission and
insertion. Also for timed automata, mutation operators can be found in [1].

In [32] Stephenson et al. propose the use of mutation testing for prioritizing test cases from a test
suite in a SPL environment. Unfortunately, the authors provide no evaluation of their approach.

6 Conclusions

In this contribution, we lifted mutation analysis to the product line level. We defined and investigated
mutation operators for feature models, mapping models, and UML models. As opposed to product-based
mutation analysis, our mutation operators are based on the SPL specification. This allows us to mimic
realistic errors made by humans during modeling a SPL. To our knowledge, this is the first step towards
a qualitative evaluation of SPL tests, which is based on the SPL’s specification.

Our results for the three examples are as expected for most of the mutation operators. As predicted,
mutation operators contributing superfluous behavior are hard to detect for conformance tests. Such
mutations are DMP (0%) and DME (0%) on feature mappings and ITG (21.67%) on domain models.
For most of the other operators we gain scores above 70%, which is in the expected range for all-
transitions coverage [33]. For DGD and CTT mutations the tests score surprisingly low results. Here,
further investigations seem necessary.

In conclusion, we identified a lack of error detection capability in standard test procedures for SPLs.
Even simple errors are not detectable, neither by all-transitions, MC/DC as for safety-critical system,
nor any other conformance test procedure. As indicated, the results are applicable to at least the here
surveyed SPL engineering paradigms negative/positve variability and delta modeling. We assume, other
paradigms suffer from this lack as well. Unfortunately, current procedures for negative testing, which
could potentially detect such errors are still not enabled for SPLs. Thus, future work will proceed to
enable negative testing procedures for SPLs.

In [20], we described product-centered and product line-centered test design processes for SPLs. We
plan to employ this mutation system for assessing the quality of the test suites generated by the different
test design methods. From the results we hope to gain general directions towards favorable test design
methods and processes by means of error detection capability, test effort, and efficiency.

Furthermore, we want to investigate higher-order mutation operators, that combine more than one
change at a time to a product. For this purpose we need co-adaptations, so that the parts that constitute the
SPL, here feature model, mapping/delta model, and domain model, are adapted to preserve consistency
when one of the parts changes. For example, such an adaptation is necessary after the deletion of a feature
to ensure that there is no broken feature reference in related mappings. In [31], we presented a prototype
for co-adaptations in another model-based scenario, namely domain-specific language development.

Acknowledgments

This work is supported by grants from Deutsche Forschungsgemeinschaft, Graduiertenkolleg METRIK
(GRK 1324).

70 Potential Errors and Test Assessment in Software Product Line Engineering

References

[1] Bernhard K. Aichernig, Florian Lorber & Dejan Ničković (2013): Time for Mutants — Model-Based Mu-
tation Testing with Timed Automata. In David Hutchison et al., editor: Tests and Proofs, Lecture Notes in
Computer Science 7942, Springer Berlin Heidelberg, pp. 20–38, doi:10.1007/978-3-642-38916-0 2.

[2] Fevzi Belli, Christof J. Budnik & Lee White (2006): Event-based modelling, analysis and testing of user
interactions: approach and case study. Software Testing, Verification and Reliability 16(1), pp. 3–32,
doi:10.1002/stvr.335.

[3] Fevzi Belli & Axel Hollmann (2008): Test generation and minimization with basic statecharts. In Edward J.
Delp & Ping Wah Wong, editors: the 2008 ACM symposium, vol. 5681, SPIE and IS&T, Bellingham and
Wash and Springfield and Va, p. 718, doi:10.1145/1363686.1363856.

[4] Fevzi Belli, Axel Hollmann & Sascha Padberg (2011): Model-Based Integration Testing with Communication
Sequence Graphs. In Justyna Zander et al., editor: Model-based testing for embedded systems, Computa-
tional analysis, synthesis, and design of dynamic systems, CRC Press, Boca Raton. doi:10.1201/b11321-10

[5] Paul E. Black, Vadim Okun & Y. Yesha (2000): Mutation operators for specifications. In: ASE 2000 15th
IEEE International Automated Software Engineering Conference, pp. 81–88. doi:10.1109/ASE.2000.873653

[6] Harald Cichos & Thomas S. Heinze (2011): Efficient Reduction of Model-Based Generated Test Suites
Through Test Case Pair Prioritization. In: Proceedings of the 7th International Workshop on Model-
Driven Engineering, Verification and Validation, IEEE Computer Society Press, Los Alamitos, pp. 37–42.
doi:10.1007/978-3-642-21210-9 24

[7] Harald Cichos, Malte Lochau, Sebastian Oster & Andy Schürr (2012): Reduktion von Testsuiten für
Software-Produktlinien. In Stefan Jähnichen et al., editor: Software Engineering 2012: Fachtagung des
GI-Fachbereichs Softwaretechnik, 27. Februar - 2. März 2012 in Berlin, LNI 198, GI, pp. 143–154.

[8] Paul Clements & Linda Northrop (2009): Software product lines: Practices and patterns, 7. print edition.
The SEI series in software engineering, Addison-Wesley, Boston Mass. u.a.

[9] Krzysztof Czarnecki & Michal Antkiewicz (2005): Mapping Features to Models: A Template Ap-
proach Based on Superimposed Variants. In Robert Glück, editor: Generative programming and com-
ponent engineering, Lecture Notes in Computer Science 3676, Springer, Berlin [u.a.], pp. 422–437,
doi:10.1007/11561347 28,.

[10] Richard A. DeMillo (1980): Mutation Analysis as a Tool for Software Quality Assurance. In: COMPSAC’80.

[11] Emelie Engström & Per Runeson (2011): Software product line testing – A systematic mapping study. Infor-
mation and Software Technology 53(1), pp. 2–13, doi:10.1016/j.infsof.2010.05.011.

[12] Sandra C. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado & P. C. Masiero (1994): Mutation analysis testing
for finite state machines. In: 1994 IEEE International Symposium on Software Reliability Engineering, pp.
220–229. doi:10.1109/ISSRE.1994.341378

[13] Iris Groher & Markus Voelter (2007): Expressing Feature-Based Variability in Structural Models. In: Work-
shop on Managing Variability for Software Product Lines. Available at http://www.voelter.de/data/
workshops/MVSPL_GroherVoelter.pdf

[14] Hans Grönniger, Holger Krahn, Claas Pinkernell & Bernhard Rumpe (2008): Modeling Variants of Automo-
tive Systems using Views. In Thomas Kühne, Wolfgang Reisig & Friedrich Steimann, editors: Tagungsband
zur Modellierung 2008 (Berlin-Adlershof, Deutschland, 12-14. März 2008), LNI, Gesellschaft für Infor-
matik, Bonn. Available at http://arxiv.org/abs/1409.6629

[15] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein & Yves Le Traon (2013): Assessing
Software Product Line Testing Via Model-Based Mutation: An Application to Similarity Testing. In: ICSTW
’13: IEEE 6th International Conference On Software Testing, Verification and Validation Workshops 2013,
pp. 188–197. doi:10.1109/ICSTW.2013.30

[16] Yue Jia & Mark Harman (2009): Higher Order Mutation Testing. Inf. Softw. Technol. 51(10), pp. 1379–1393,
doi:10.1016/j.infsof.2009.04.016.

http://dx.doi.org/{10.1007/978-3-642-38916-0_2}
http://dx.doi.org/{10.1002/stvr.335}
http://dx.doi.org/{10.1145/1363686.1363856}
http://dx.doi.org/10.1201/b11321-10
http://dx.doi.org/10.1109/ASE.2000.873653
http://dx.doi.org/10.1007/978-3-642-21210-9_24
http://dx.doi.org/{10.1007/11561347_28,}
http://dx.doi.org/{10.1016/j.infsof.2010.05.011}
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://www.voelter.de/data/workshops/MVSPL_GroherVoelter.pdf
http://www.voelter.de/data/workshops/MVSPL_GroherVoelter.pdf
http://arxiv.org/abs/1409.6629
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/{10.1016/j.infsof.2009.04.016}

Hartmut Lackner & Martin Schmidt 71

[17] Yue Jia & Mark Harman (2011): An Analysis and Survey of the Development of Mutation Testing. IEEE
Transactions on Software Engineering 37(5), pp. 649–678, doi:10.1109/TSE.2010.62.

[18] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak & A. S. Peterson (1990): Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Available at http://www.sei.cmu.edu/reports/90tr021.pdf

[19] S. Kim, John A. Clark & J. A. Mcdermid (2000): Class Mutation: Mutation Testing for Object-Oriented
Programs. In: FMES.

[20] Hartmut Lackner, Martin Thomas, Florian Wartenberg & Stephan Weißleder (2014): Model-Based Test De-
sign of Product Lines: Raising Test Design to the Product Line Level. In: ICST’ 14: International Conference
on Software Testing, Verification, and Validation, pp. 51–60. doi:10.1109/ICST.2014.16

[21] Malte Lochau, Ina Schaefer, Jochen Kamischke & Sascha Lity (2012): Incremental Model-Based Testing of
Delta-Oriented Software Product Lines. In David Hutchison et al., editor: Tests and Proofs, Lecture Notes
in Computer Science 7305, Springer Berlin Heidelberg, Berlin and Heidelberg, pp. 67–82, doi:10.1007/978-
3-642-30473-6 7.

[22] Object Management Group (OMG) (2011): UML 2.4.1 Superstructure Specification.

[23] Jeff Offutt (1992): Investigations of the Software Testing Coupling Effect. ACM Trans. Softw. Eng. Methodol.
1(1), pp. 5–20, doi:10.1145/125489.125473.

[24] Jeff Offutt, Shaoying Liu, Aynur Abdurazik & Paul Ammann (2003): Generating test data from state-
based specifications. The Journal of Software Testing, Verification and Reliability 13, pp. 25–53.
doi:10.1002/stvr.264

[25] Jeff Offutt, Shaoying Liu, Aynur Abdurazik & Paul Ammann (2003): Generating test data from state-
based specifications. The Journal of Software Testing, Verification and Reliability 13, pp. 25–53.
doi:10.1002/stvr.264

[26] Jeff Offutt & Roland H. Untch (2001): Mutation 2000: Uniting the Orthogonal. In W.Eric Wong, editor: Mu-
tation Testing for the New Century, The Springer International Series on Advances in Database Systems 24,
Springer US, pp. 34–44, doi:10.1007/978-1-4757-5939-6 7.

[27] Erika Mir Olimpiew & Hassan Gomaa (2005): Model-Based Testing for Applications Derived from Software
Product Lines. ACM SIGSOFT Software Engineering Notes 30(4), pp. 1–7, doi:10.1145/1082983.1083279.

[28] Sebastian Oster, Ivan Zorcic, Florian Markert & Malte Lochau (2011): MoSo-PoLiTe: tool sup-
port for pairwise and model-based software product line testing. In: VaMoS ’11, pp. 79–82.
doi:10.1145/1944892.1944901

[29] Klaus Pohl, Günter Böckle & Linden, Frank J. van der (2005): Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer-Verlag New York, Inc, Secaucus and NJ and USA. doi:10.1007/3-
540-28901-1

[30] Ina Schaefer (2010): Variability Modelling for Model-Driven Development of Software Product Lines Sys-
tems, Linz, Austria, January 27-29, 2010. Proceedings. In D. Benavides, D. Batory & P. Grünbacher, editors:
Fourth International Workshop on Variability Modelling of Software-Intensive Systems, Linz, Austria, Jan-
uary 27-29, 2010. Proceedings, ICB-Research Report 37, Universität Duisburg-Essen, pp. 85–92.

[31] Martin Schmidt, Arif Wider, Markus Scheidgen, Joachim Fischer & Sebastian von Klinski (2013): Refactor-
ings in Language Development with Asymmetric Bidirectional Model Transformations. In Ferhat Khendek,
Maria Toeroe, Abdelouahed Gherbi & Rick Reed, editors: SDL 2013: Model-Driven Dependability Engi-
neering - 16th International SDL Forum, Montreal, Canada, June 26-28, 2013. Proceedings, Lecture Notes
in Computer Science 7916, Springer, pp. 222–238. doi:10.1007/978-3-642-38911-5 13

[32] Zoë Stephenson, Yuan Zhan, John Clark & John McDermid (2004): Test Data Generation for Product Lines
- A Mutation Testing Approach. In Birgit Geppert et al., editor: SPLiT ’04: Proceedings of the International
Workshop on Software Product Line Testing, Boston and MA, pp. 13–18.

[33] Stephan Weißleder (2009): Influencing Factors in Model-Based Testing with UML State Machines: Report
on an Industrial Cooperation. In David Hutchison et al., editor: Model Driven Engineering Languages and

http://dx.doi.org/{10.1109/TSE.2010.62}
http://www.sei.cmu.edu/reports/90tr021.pdf
http://dx.doi.org/10.1109/ICST.2014.16
http://dx.doi.org/{10.1007/978-3-642-30473-6_7}
http://dx.doi.org/{10.1007/978-3-642-30473-6_7}
http://dx.doi.org/{10.1145/125489.125473}
http://dx.doi.org/10.1002/stvr.264
http://dx.doi.org/10.1002/stvr.264
http://dx.doi.org/10.1007/978-1-4757-5939-6_7
http://dx.doi.org/{10.1145/1082983.1083279}
http://dx.doi.org/10.1145/1944892.1944901
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/978-3-642-38911-5_13

72 Potential Errors and Test Assessment in Software Product Line Engineering

Systems, Lecture Notes in Computer Science 5795, Springer Berlin Heidelberg, Berlin and Heidelberg, pp.
211–225, doi:10.1007/978-3-642-04425-0 16.

[34] M. R. Woodward (1993): Errors in algebraic specifications and an experimental mutation testing tool. Soft-
ware Engineering Journal 8(4), p. 211, doi:10.1049/sej.1993.0027.

http://dx.doi.org/{10.1007/978-3-642-04425-0_16}
http://dx.doi.org/{10.1049/sej.1993.0027}

	1 Introduction
	2 Preliminaries
	2.1 Model-based Product Line Engineering
	2.1.1 Negative Variability
	2.1.2 Positive Variability
	2.1.3 Delta Modeling

	2.2 Mutation Analysis
	2.3 Potential Errors and Mutations

	3 Potential Errors in Model-Based Product Line Engineering
	4 Product Line Test Assessment
	4.1 Mutation System for SPLs
	4.2 SPL Mutation Operators
	4.2.1 Feature Mapping
	4.2.2 UML State Machine

	4.3 Evaluation
	4.3.1 Examples
	4.3.2 Results

	5 Related Work
	6 Conclusions

