
A.K. Petrenko, B.-H. Schlingloff, N. Pakulin (Eds.):
Tenth Workshop on Model-Based Testing (MBT 2015)
EPTCS 180, 2015, pp. 7–21, doi:10.4204/EPTCS.180.1

c© Espada, Gallardo, Salmerón & Merino

Using Model Checking to Generate Test Cases for Android
Applications

Ana Rosario Espada Marı́a del Mar Gallardo
Alberto Salmerón Pedro Merino

Dept. Lenguajes y Ciencias de la Computación
E.T.S.I. Informática University of Málaga∗

[anarosario,gallardo,salmeron,pedro]@lcc.uma.es

The behavior of mobile devices is highly non deterministic and barely predictable due to the inter-
action of the user with its applications. In consequence, analyzing the correctness of applications
running on a smartphone involves dealing with the complexity of its environment. In this paper,
we propose the use of model-based testing to describe the potential behaviors of users interacting
with mobile applications. These behaviors are modeled by composing specially-designed state ma-
chines. These composed state machines can be exhaustively explored using a model checking tool
to automatically generate all possible user interactions. Each generated trace model checker can be
interpreted as a test case to drive a runtime analysis of actual applications. We have implemented a
tool that follows the proposed methodology to analyze ANDROID devices using the model checker
SPIN as the exhaustive generator of test cases.

1 Introduction

At present, smartphone technology is ubiquitous and changes constantly. Users use their mobiles not only
as phones, but as compact computers, able to concurrently provide services which are rapidly created,
updated, renewed and distributed. In this scenario of continuous evolution, different operating systems
have been developed such as SYMBIAM, IOS, WINDOWS PHONE and ANDROID, which allow phones to
support more and more complex applications. These platforms define new models of execution, quite
different from those used by non-mobile devices. For instance, one of the most defining characteristics
of these systems is their open and event-driven nature. Mobile devices execute a continuous cycle that
consists of first, waiting for the user input and second, producing a response according to that input. In
addition, the internal structure of mobile systems is constructed from a complex combination of applica-
tions, which enable users to easily navigate through them. Thus, although, at a lower level, the execution
of applications on a mobile device involves the concurrent execution of several processes (for instance,
in ANDROID, applications are JAVA processes executing on the underlying LINUX operating system), the
way these applications interact with each other and with the environment does not correspond with the
standard interleaving based concurrency model.

It is clear that the execution of applications on these new operating systems, such as ANDROID [1],
may lead to the appearance of undesirable bugs which may cause the phone to malfunction. For example,
mobile devices may display the typical errors of concurrent systems such as violations of safety and
liveness properties. However, there are other bugs inherent to the particular concurrency model supported
by the new platforms which are not directly analyzable using current verification technologies. For
∗Work partially supported by grants P11-TIC-07659 (Regional Government of Andalusia), TIN2012-35669 (Spanish Min-

istry of Economy and Competitiveness), UMA-Agilent Technologies 808/47.3868- 4Green and the AUIP as sponsor of the
Scholarship Program Academic Mobility.

http://dx.doi.org/10.4204/EPTCS.180.1

8 Using Model Checking to Generate Test Cases for Android Applications

example, applications could incorrectly implement the life cycles of their activities or services (in the case
of ANDROID), or may misbehave upon the arrival of unexpected external events. In addition, conversion
errors, unhandled exceptions, errors of incompatibility API and I/O interaction errors as described in [16]
may also appear.

Different techniques for analyzing the execution of mobile platforms have been proposed. Ver-
ification approaches such as model checking [9] can be applied to the software for mobile devices
[22, 21, 19]. Model checking is based on a exhaustive generation of all the inter leavings for the thread-
s/processes. A major problem to apply this technique to the real code, like mobile applications, it the
need to construct a model of the underlaying operating system or libraries [10, 7, 11]. The open nature of
these platforms, which are continuously interacting with an unspecified environment, makes other anal-
ysis techniques such as testing, monitoring, and runtime verification more suitable to check bugs without
too much extra effort to model the operating system or the libraries. There have been several recent
proposals [12, 24, 18] for testing in this framework with commercial tools [4, 2]. In these approaches,
test cases are randomly generated with tools such as MONKEY and MONKEYRUNNER [1].

Testing and runtime verification maybe also combined, as described in [6], to construct verification
tools for mobile applications [20, 26]. On the one hand, the careful selection of test cases guides the ex-
ecution of the device, while, on the other, the runtime verification module implements observers devoted
to analyzing the traces produced by the device. The runtime verification module was already addressed
by some authors of this paper in [14]. Here we focus on describing how the generation of test cases may
be carried out following the model-based testing approach [25] supported by model checking tools.

Our proposal is based on the idea that although the interaction between the user and the mobile
device is completely undetermined, each application is associated with a set of intended user behaviors
which define the common ways of using the application. For each application, or more precisely, for each
application view, we use state machines to construct a non deterministic model representing the expected
use of the view/application. This state machine is built semiautomatically, with information provided by
the expert (the app designer or tester) and by ANDROID supporting tools like UIAUTOMATORVIEWER.
Then, all these view models may be conveniently composed to construct a non deterministic model of
the user interaction with a subset of mobile applications of interest. Due to the way of building the state
machines, each execution trace of the composed state machine corresponds to a possible realistic use of
the mobile. Thus, the generation of test cases is reduced to the generation of all possible behaviors of
the composed machine, which may be carried out by a model checking tool. Although the methodology
proposed does not depend on the underlying mobile operating system, the tool has been built on the
assumption that the operating system is ANDROID.

The paper provides two main contributions. The first one is the formal definition of a special type
of state machine that models the expected user interaction with the mobile application. The approach
to modeling is completely modular in the sense that adding (or removing) new view state machines to
incorporate (eliminate) user behaviors does not affect the rest of state machines that have already been
defined. The second one is a method to employ the explicit model checker SPIN [15] that takes the
composed state machine as input and and produces a significant set of test cases that generate traces for
runtime verification tools. We have constructed a tool chain which implements both modeling and test
generation phases to shows the feasibility of the approach in practice.

The rest of the paper is organized as follows. Section 2 describes our approach to using model
checking for test case generation. Section 3 introduces the testing platform that we are developing.
Section 4 provides a formal description of the behaviour of composed state machines. Section 5 uses
well known ANDROID applications to describe how our approach for test case generation is implemented.
Section 6 gives a comparison with related work. Last section summarizes conclusions and future work.

Espada, Gallardo, Salmerón & Merino 9

1 mtype = { state_init , state_1 , state_2 };

2 typedef Device { byte transitions[MAX_TR]; short index; bool finish; }

3 Device devices[DEVICES];

4 mtype state[DEVICES];

5 active proctype traceCloser () provided (devices[DEVA]. finish && devices[DEVB]. finish) {

6 end_tc: outputTransitions ()

7 }

8 active proctype device_A () {

9 state[DEVA] = state_init;

10 do

11 :: state[DEVA] == state_init -> transition(DEVA , BUTTON_1); state[DEVA] = state_1

12 :: state[DEVA] == state_1 -> transition(DEVA , SWIPE); state[DEVA] = state_1

13 :: state[DEVA] == state_1 -> transition(DEVA , BUTTON_2); state[DEVA] = state_2

14 :: state[DEVA] == state_2 -> transition(DEVA , MESSAGE); break

15 :: state[DEVA] == state_2 -> transition(DEVA , BACK); break

16 od;

17 devices[DEVA]. finish = true;

18 }

19 active proctype device_B () {

20 state[DEVB] = state_init;

21 ...

22 devices[DEVB]. finish = true;

23 }

Listing 1: Sample PROMELA specification for test generation

2 Model checking for test case generation

SPIN [15] is a model checker that can be used to verify the correctness of concurrent software systems
modeled using the specification language PROMELA. The focus of the tool is on the design and validation
of computer protocols, although it has been applied to other areas. SPIN can check the occurrence of
a property over all possible executions of a system specification, and provide counterexamples when
violations are found.

We use the SPIN model checker in our approach for automatically generating test cases from appli-
cation models in the following way. First, each device will be represented by a single PROMELA process,
which contains a state machine that models the applications contained on that device. The state machines
themselves are written as loops, where each branch corresponds to a transition triggered by an event. The
current state of each state machine (stored as a global PROMELA variable) determines which branches
are active and may be taken. The right hand side of each branch records the transition and updates the
current state. This PROMELA specification is explored exhaustively by SPIN in order to generate all pos-
sible test cases described by the application model, taking all possible alternatives when there is more
than one active branch at the same time.

Listing 1 shows an example of a PROMELA specification that follows the approach outlined above.
This example contains two devices and with their corresponding state machine (device A() in line 8
and device B() in line 19), with two states plus the initial state. The transition function is used to
record the user or system transition associated with each branch. In order to complete a test case, all
devices must have finished their respective state machines (lines 17 and 22), usually when the do loop is
exited (lines 14 and 15). This enables the traceCloser process to be executed due to its schedulability
restrictions (line 5), which prints the transitions of the generated test case.

In addition to the current state (line 4), this PROMELA specification also keeps a list of the transitions
taken on the test currently being generated (line 2). The purpose of this data structure is twofold. On the
one hand, outputTransitions will print the trace stored here. On the other hand, the history of the

10 Using Model Checking to Generate Test Cases for Android Applications

Figure 1: Architecture

current trace is kept inside the SPIN’s global state, which is taken into consideration when deciding if a
state has already been visited. Thus, the same transition may be taken more than once if possible (e.g.
line 12), since the history of the states will be different. However, this requires the maximum depth of
exploration to be bounded by the MAX TR constant (line 2).

3 Architecture of the platform

Figure 1 shows the general structure of tools that combine testing and runtime verification techniques to
analyze the behavior of applications running on mobile devices. The bottom side uses observers/monitors
to analyze the resulting execution traces and verify whether they comply with the expected properties
as implemented in the tool DRAGONFLY [14, 13]. The top side of the figure shows the generation of
test cases considered in this paper. The Tester is the expert responsible for modeling the behavior of the
applications to be analyzed using a state chart diagram. These models may be constructed as part of the
design phase of the applications, and are characterized by their compositional nature: functionality can
be added to an existing view without essentially altering the existing behavior.

Figure 2 shows the complete process of our actual proposal for test generation and execution, which
is divided into three main modules:

• Modeling. UIAUTOMATORVIEWER tool from ANDROID tools extracts the controls definition in
each view of the ANDROID application under analysis. Then, the controls definition and the state
chart diagrams are associated into a Model.xml file with a given structure.

• Test Case Generation. Creates a test case generator per XML file model into a PROMELA file.
The SPIN model checker [15] performs an exhaustive search of all valid paths in the model using
the method explained in Section 2, which correspond to test cases, and generates an XML file for
each one with the appropriate sequence of user input events.

• Test Case Execution. Generates each test class provided using the valid paths described into XML
file by the test case generating module. Then, they can be executed by the ANDROID framework,
and sends them to the devices to be executed using the UIAUTOMATOR tool which is an extension
of JUnit tool using to write user interfaces test cases for ANDROID.

The following sections provide details about the internal behavior of the Modeling and Test Case
Generator modules, which are the aim of this work.

Espada, Gallardo, Salmerón & Merino 11

Figure 2: Test generation and execution process

4 Formal Description of models

In the following description, we define the behaviour of mobile applications through the composition
of state machines at different abstraction levels. The lowest level is composed of view state machines.
A view corresponds to a mobile screen, with its buttons, text fields, etc.. through which users may
interact with the device. When the view is active, users may fire events through its interface. A view
state machine models the possible behaviors of the user when he/she is making use of the view. These
behaviors coincide with the sequence of events fired by the user. Sometimes one of these events makes
a different view becomes active. We have modeled this control transfer between views through the
composition relation of view state machines from which device state machines are constructed. Device
state machines use the connection states to switch from the current active view to a different view. In
this formalization, the specific applications to which each view belongs have not been taken into account,
that is, we only model the transfer from one view to another, irrespective of whether both views belong to
the same application. In the sequel, we use symbols −−→ /

−−→i to denote the transition relation of the view
state machines M/Mi. In addition, symbol −−→c defines the binary relation which allows us to connect
view state machines. Finally, −−→d represents the transition relation of the device state machine which is
constructed from relations −−→ /

−−→i and −−→c.
Since ANDROID applications are event driven, we may consider that each test case corresponds to

the sequence of events fired which drive the mobile behaviour. In the formal description, events are the
labels of transitions (−−→ /

−−→i,
−−→c, −−→d) and have the natural meaning. For instance, s e−→ s′ means that

event e must be fired to be able to transit from s to s′.

4.1 View state machines

Definition 1 A view state machine is a tuple M = 〈Σ, I, −−→ ,E,C,F〉, where Σ is a finite set of states,
I ⊆ Σ are the initial states, C ⊆ Σ are the so-called connection states, F ⊆ Σ is the set of final states, E is
the set of user events, and −−→⊆ Σ×E×Σ is the labelled transition relation. Sets I, C and F are mutually
disjoint.

Final states are states from which it is not possible to evolve. Connection states are states from which
it is possible to transit a different state machine. These states are essential to model the switch between

12 Using Model Checking to Generate Test Cases for Android Applications

typical views of smart phone devices. Usually, when a new view is called, the execution of the system is
supposed to return to the view caller. To take this behavior into account, we assume that each connection
state s ∈C has a related state return(s) ∈ Σ which represents the state to be returned when the new view
invoked from s has finished its execution.

We partition set of events E into two disjunct sets: the set of user events, denoted as E+, which
contains events such pressing a button, etc., and the set of system events, denoted as E−, which includes,
for instance, events corresponding to system responses to user requests. In the following, we use e+, e−

to represent user events and system events, and we use e to refer to events which may be of any of both
types.

View state machines are deterministic in the sense that if s e−→ s1, and s e′−→ s2 and e = e′, then s1 = s2
that is, the machine defines, at most, a transition for each pair state/input event.

We now define the notion of flow (an execution in a view state machine), and the test cases generated
from flows.
Definition 2 Given a view state machine M = 〈Σ, I, −−→,E,C,F〉, we define the set Flow(M) = {s0

e1−→
s1

e2−→ ·· · en−→ sn|s0 ∈ I,sn ∈ F ∪C} of all sequences of states, allowed by M, starting at an initial state of
M, and ending at a final or connection state of M. The length of a flow is the number of its states. Given a
flow of length n, φ = s0

e1−→ ·· · en−→ sn ∈ Flow(M), the sequence of events determined by φ (the test case) is
test(φ) = e1 · · · · · en. We define the set of test cases allowed by M as TC(M) = {test(φ)|φ ∈ Flow(M)}.

According with Definition 2, test cases are finite sequences of user and system events. For instance,
sequence e+1 ·e

+
2 ·e

−
3 ·e

+
4 represents a test case where the user first fires events e+1 and e+2 , then the system

fires e−3 , and finally user fires e+4 . Thus, user and system events are similarly dealt with during the
generation of test cases. The difference between them is of importance when test cases are transformed
into code to be executed on the mobile as described in Section 5. User events will be transformed into
non-blocking calls to methods that simulate the real occurrence of the event, while system events will
correspond to calls to blocking methods which wait for the arrival of the system event.

4.2 Composition of view state machines

In this section, we describe how view state machines are composed to construct flows that navigate
through different views representing realistic ways of using a mobile.

We first define the transition between different view state machines. This transition is realized
through the binary relation R defined between the connection and initial states. The idea is as fol-
lows. Assume that the flow in execution belongs to a view state machine Mi, and that a connection state
cs of Mi has been reached. If relation R defines a transition from cs to some initial state of other machine
M j, the flow could jump from Mi to M j, and proceed following the transition relation of M j. This jump
implies the change in the activity visible in the device from Mi to M j. In the sequel, we call active the
view state machine which is visible in the device, and create to the rest of view state machines which
have been created but are not currently visible in the device.

Given a finite family of state machines Mi = 〈Σi, Ii,
−−→i,Ei,Ci,Fi〉 we define Σ = ∪n

i=1Σi, I = ∪n
i=1Ii,

E = ∪n
i=1Ei, C = ∪n

i=1Ci, and F = ∪n
i=1Fi. In addition, we denote with E ⊆ E the set of call events that

provoke the switch between active view state machines.

Definition 3 Let us assume a finite family of state machines, Mi = 〈Σi, Ii,
−−→i,Ei,Ci,Fi〉. The connection

of view state machines M1, · · · ,Mn is given by a binary relation R(M1, · · · ,Mn) ⊆C×E × I, that con-
nects connection states with initial states. In the following, we denote 3-uples (si,e,s j) of R(M1, · · · ,Mn)

as si
e−→c s j. Observe that source and target machines i and j may coincide.

Espada, Gallardo, Salmerón & Merino 13

When a new view is created, the call event may specify some parameters that determine how it must
be started or finished. For instance, if the view has already been created, the caller may choose whether
to reuse the previously created view or, to the contrary, create a new one. Additionally, when the new
created view has finished the execution, the caller view may automatically become active or not. Boolean
functions reuse,auto return : E → {false, true} establish these parameters for the call events. Although
there are other parameters that can be defined in the call events, these two are sufficient to describe the
mobile behaviour.

We now define the device state machine which composes the behavior displayed by the view state
machines using the connection relation.

Definition 4 Let us assume a finite family of state machines, Mi = 〈Σi, Ii,
−−→i,Ei,Ci,Fi〉, and a connection

relation of M1, · · · ,Mn, R(M1, · · · ,Mn), as defined above. The device state machine

D = M1||| · · · |||Mn|||R(M1, · · · ,Mn)

is defined as the state machine 〈Σ×Σ∗×E ∗, I, −−→d ,E,F〉 where

1. Σ∗ is the set of finite sequences of states of Σ, and E ∗ is the set of finite sequences of call events.

2. Transition relation −−→d is defined by the rules below.

We call configurations the states of device state machines. A configuration is a 3-uple 〈s,h,eh〉where
s is the current state of the active view state machine, i.e., the view visible in the mobile. Sequence h is
the stack of states s1 · s2 · · ·sn which constitute the history of the view machines which have been created
(and have not been yet destroyed) in the device but which are not currently visible. Each state si of
s1 · s2 · · ·sn is a connection state of a view state machine which was active, but a transition from si to
another view machine took place, and the view state machine of si became inactive. Finally eh = e1 · · ·en

is the history of events that have provoked a view switch in the current execution. Thus, ei ∈ E is the
event which fired the transition from state si to an initial state of another view state machine. In the
following, ε represents the empty (event) history.

The evolution of configurations is given by the transition relation −−→d defined by the rules in Figure 3.
Relation −−→d is constructed from the transition relations of view state machines −−→i, and the binary
connection relation −−→c. In these rules, given a history of states s1 · · · · · sn and the index j of a view state
machine M j, function top : Σ∗×N → Σ∪{⊥} returns the last state of the view state machine M j in
the sequence s1 · · · · · sn. That is, top(s1 · · · · · sn, j) returns sk, if 1 ≤ k ≤ n is the biggest index such that
sk ∈ Σ j, or ⊥, if such a state does not exist.

Rule R1 states that a transition inside a view state machine Mi corresponds to a transition in the
device state machine. Rules R2, R3 model a transition from machine Mi to machine M j when both the
new state s′ and the event e are added to the state and event histories of the current system configuration.
Rule R2 is applied when event e does not involve reusing a previously created view (reuse(e) is false),
while R3 applies when a view of M j, should have been reused (reuse(e) is true), but the current state
history does not contain one (top(s1 · · ·sn, j) =⊥). Rule R4 defines a transition from machine Mi to M j

by reusing a previously created flow of M j (reuse(e) is true) which is stored in the configuration history
(top(s1 · · ·sn, j) = sk). Finally, R5 defines the case when the flow of the current active view has finished,
and the execution must continue with the view stored at the top of the state history. Otherwise, that is, if
auto return(e) returns false, the current configuration 〈s,h,eh〉 cannot evolve.

14 Using Model Checking to Generate Test Cases for Android Applications

R1.
s e−→i s′

〈s,h,eh〉 e−→d 〈s′,h,eh〉
R2.

s ∈Ci,s
e−→c s′,¬reuse(e)

〈s,h,eh〉 e−→d 〈s′,h · return(s),eh · e〉

R3.
s ∈Ci,s′ ∈ I j,s

e−→c s′,reuse(e), top(s1 · · ·sn, j) =⊥
〈s,h,eh〉 e−→d 〈s′,h · return(s),eh · e〉

R4.
s ∈Ci,s′ ∈ I j,s

e−→c s′,reuse(e), top(s1 · · ·sn, j) = sk

〈s,s1 · · ·sn,e1 · · ·en〉
e−→d 〈sk,s1 · · ·sk−1,e1 · · ·ek−1〉

R5.
s ∈ Fi,auto return(e)

〈s,h · s′,eh · e〉 −−→d 〈s′,h,eh〉

R6.
c0

e+−→d c1

〈c0,c′0,dh〉 e+−→d||d′ 〈c1,c′0,dh+{e+}〉
R7.

c′0
e−−→d′ c′1, e+ ∈ dh

〈c0,c′0,dh〉 e−−→d||d′ 〈c0,c′1,dh−{e+}〉

Figure 3: Transition relation rules

Definition 5 Given a device state machine

D = M1||| · · · |||Mn|||R(M1, · · · ,Mn)

= 〈Σ×Σ
∗×E ∗, I, −−→d ,E ∪E ,F〉

1. the trace-based semantics determined by D (O(D)) is given by the set of finite/infinite sequences
of configurations (flows) produced by the transition relation −−→d from an initial state, that is,
O(D) = {〈s0,ε,ε〉

e0−→d 〈s1,h1,eh1〉 · · · |s0 ∈ I}.

2. Given a flow φ = c0
e1−→d c1

e2−→d c2 · · · ∈ O(D), the test case determined by φ is the sequence of
events test(φ) = e1 · e2 · · ·

3. The set of test cases determined by a set of flows T is TC(T) = {test(t)|t ∈T }.

Thus, a flow φ ∈ O(D) consists of a sequence of view state machine flows (Definition 2) connected
throw connection states. Flow φ may finish at a final state of some view state machine, or may be
infinite. The length |φ | of a flow φ is the number of its states (configurations), if it is finite, or ∞,
otherwise. Given a flow φ = c0

e1−→d c1
e2−→d c2 · · · ∈ O(D), we define the truncated flow of n, φ n, as φ

iff |φ | <= n or φ n = c0
e1−→d c1

e2−→d c2 · · ·
en−1−−→d cn−1, otherwise. Considering this, we define the set of

traces On(D) as the set all traces of O(D) truncated up to length n, that is, On(D) = {φ n|φ ∈ O(D)}.
Observe that the state space of device state machines is not finite because configurations include

the state and event histories which may have arbitrary lengths. In addition, the state space generated
when an explicit model checker is constructing all the flows allowed by a device state machine is non-
finite not only due to the state and event histories, but also because the matching algorithm, carried out
during the state space search, must take into account both the current state of the flow and the history

of the previous states of the flow. This allows that, for instance, flows φ1 = 〈s0,ε,ε〉
e+1−→d 〈s1,ε,ε〉

e+2−→d

〈s2,ε,ε〉
e+3−→d 〈s3,ε,ε〉 and φ2 = 〈s0,ε,ε〉

e+4−→d 〈s4,ε,ε〉
e+1−→d 〈s1,ε,ε〉

e+2−→d 〈s2,ε,ε〉
e+3−→d 〈s3,ε,ε〉 can be

both generated by the model checker although when constructing φ2 state s1 has been already visited as
explained in Section 2.

Espada, Gallardo, Salmerón & Merino 15

In consequence, the models of device state machines are not, in general, state finite which means
that, the model checking process does not, in general, terminate. In the current implementation, we have
solved this problem by bounding the depth of the execution flows analyzed generating On(D) for some
fixed n.

4.2.1 Composing several devices

The extension of the state machine model to several devices is carried out by composing the device state

machines by interleaving. Thus, if c0
e1−→d c1 and c′0

e′1−→d′ c′1 are a transitions in devices D and D ′, respec-

tively, then they allow the two following transitions, 〈c0,c′0〉
e1−→d||d′ 〈c1,c′0〉 and 〈c0,c′0〉

e′1−→d||d′ 〈c0,c′1〉
in the interleaved composition of D and D ′. The communication between both devices is modeled by
a user event in the sender device (the device that starts the communication), and a system event in the
receiver device (the device that expects the message).

This is described in the last two rules of Figure 3. Rule R6 handles the transition from the sender,
and R7 handles the transition in the receiver. Note that dh denotes the set of system events produced but
not yet consumed. Thus, for instance, using the previous example, if e1 = e+1 is an event that implies a
communication from D to D ′, and e′1 = e−1 is the corresponding event to be read by D ′ from D , we would
generate the test cases e+1 · e

−
1 and e−1 · e

+
1 . Note that in the second test case, the method that implements

the transition for the receiver event will suspend the execution of D ′ until event e+1 is fired by D .
In addition, when dealing with more that one device, we make use of model checking optimiza-

tion techniques such as partial order reduction [15] to avoid the generation of different test cases that
correspond to a single feasible interaction between the devices.

5 Case Study

In this section, we describe how the behavior of mobile applications is modeled and how tests cases are
automatically generated from these models.

5.1 Modeling

We first need to construct an abstract model of the system to be analyzed, using statecharts and following
the notions of view and device state machines given in Section 4. This model should include the relevant
user interactions for the tests we want to perform. For instance, a test case which is affected by whether
the GPS is on or off may include user interactions to change its status, while other tests may not need
those interactions. A test case generator will be created from this model using automatic transformations.
This modeling step can be performed separately from the design of the application, or in combination
as is custom in other model-driven tools such as IBM Rational Rhapsody [3]. In addition, the controls
of each screen have to be extracted and modeled, so that transitions on the state machines can be tied to
actions performed on these controls.

We use a scenario with two applications, Facebook and YouTube. This scenario is composed of three
views (HomeView, CommentView and MovieView), which describe the behavior of a user placing a link
to a YouTube video in a Facebook comment, and watching this or other videos in YouTube. The state
machines can be modeled using UML as shown in Figure 4. These state machines include additional
information required to correlate them with the applications and their views. An XML definition of the
model can then be automatically generated from these state machines. Listing 2 shows part of this XML

16 Using Model Checking to Generate Test Cases for Android Applications

Figure 4: Facebook and YouTube model

Figure 5: Identifying control groups

definition 1. In particular, it contains the state machine associated with the Home view of the Facebook
app. Each state machine may define several states and transitions. In addition to simple transitions
between states of the same state machine, it is also possible to define transitions that call another state
machine and, upon its termination, continue in the caller machine. The type and through attributes
identify the type of transition and the state machine to call (if any). Listing 2 provides examples of both
simple (line 10) and complex (lines 9 and 11) transitions. Each transition has an unique ID within its
view that is used to identify transitions, and also declares the user or system event that triggers it.

The events that fire the transitions in Figure 4 are the user actions performed on controls placed
in visible views. We organize controls into group of controls according to the actions associated with
each. Figure 5 shows some of the control groups that have been identified in the CommentView View.
For instance, the Comment group could represent any of the text fields to write a comment, and the
clickYouTubeLink identifies links to YouTube videos.

These control groups are declared in a control definition file with the help of the UIAUTOMA-

1More complete versions of this an other parts of the model are available online at http://morse.uma.es.

http://morse.uma.es

Espada, Gallardo, Salmerón & Merino 17

1 <Application name=" Facebook" package ="com.facebook.android">

2 <Views >

3 <View name=" HomeView" controlsFile ="Home.xml" >

4 <StateMachines >

5 <StateMachine name=" HomeUpdate">

6 <States ><State name="S0"/><State name="S1"/></States >

7 <Transitions >

8 <Transition ID="1" event =" Swipe" prev ="" next="S0" type=" Simple"/>

9 <Transition ID="2" event=" Comment" prev="S0" next="S0"

through =" CommentView" type="View"/>

10 <Transition ID="3" event="Swipe" prev="S0" next="S1" type=" Simple"/>

11 <Transition ID="4" event=" ClickYouTubeLink" prev="S0" next="S0"

through =" ViewingMovieStateMachine" type=" StateMachine "/>

12 <Transition ID="5" event ="Swipe" prev="S1" next="S1" type=" Simple"/>

13 <Transition ID="6" event =" Comment" prev="S1" next="S0" through =" CommentView"

type="View"/>

14 <Transition ID="7" event ="Swipe" prev="S1" next ="" type=" Simple"/>

15 ...

Listing 2: State machine configuration

1 <node index ="0" text ="" testGroup =""

2 <node index ="0"

3 <node testGroup =" clicLike" IsFixedValue ="" PatternOrValue ="" index ="0" text="Like"

resource -id="id/feed_feedback_like_container" clickable ="true"

long -clickable ="false" password ="false" ... />

Listing 3: Control group definition

TORVIEWER tool [1]. This tool analyzes each view without requiring its source code, and generates
an UIX (XML) file containing the hierarchy of controls in the view. Listing 3 shows part of the gener-
ated file for the Facebook application. The attributes associated with each control in the UIX file include
the kind of actions that the control supports, such as clickable or scrollable. The UIX file is then
customized to bring together the controls which belong to the same group by setting the controlGroup
attribute. Some controls accept parameters which may also be included as attributes in this file. For
instance, the values introduced in text fields may be fixed or generated automatically according to some
pattern.

5.2 Test case generation

We are now ready to generate the corresponding test cases in an exhaustive manner. The XML file is
automatically transformed into a PROMELA specification that follows the same principles described in
Section 2, but with a few additions to acomodate the structure of ANDROID applications. Each device is
still represented by a single process, but their state machines are defined in separate inlines, one per each
app, view and state machine, which can then be composed. In addition, there may be device-specific app
and view inlines, since views and state machines can be assigned to a particular device. In the simplest
form of composition, device processes call their app inlines, app inlines call their view inlines, and view
inlines call their state machine inlines. On the other hand, a state machine may call another view or state
machine. When this happens, the state of the previous state machine should be stored such that when
the new one is finished, the state is correctly restored. To support this we introduce a backstack data
structure, where the state of the current state machine is always at the top of the stack.

Listing 4 shows a simplified extract of the PROMELA specification generated for the Facebook and

18 Using Model Checking to Generate Test Cases for Android Applications

1 typedef Backstack { mtype states[MAX_BK]; short index; }

2 Backstack backstacks[DEVICES];

3 #define currentBackstack devices[device]. backstack

4 #define currentState currentBackstack.states[currentBackstack.index]

5 active proctype device_219dcac41 () {

6 if

7 true -> app_219dcac41_Facebook(D_219dcac41);

8 true -> app_219dcac41_YouTube(D_219dcac41);

9 fi;

10 devices[D_219dcac41]. finished = true

11 }

12 inline statemachine_Facebook_HomeView_HomeUpdate(device) {

13 currentState = State_Facebook_HomeView_HomeUpdate_init;

14 pushToBackstack(device , State_Facebook_HomeView_HomeUpdate_init);

15 do

16 :: currentState == State_Facebook_HomeView_HomeUpdate_S0 ->

17 transition(device , VIEW_HomeView , 2);

18 view_Facebook_CommentView(device);

19 currentState = State_Facebook_HomeView_HomeUpdate_S0

20 :: currentState == State_Facebook_HomeView_HomeUpdate_S0 ->

21 transition(device , VIEW_HomeView , 4);

22 statemachine_YouTube_MovieView_ViewingMovieStateMachine(device);

23 currentState = State_Facebook_HomeView_HomeUpdate_S0

24 ...

25 od;

26 popFromBackstack(device)

27 }

Listing 4: PROMELA specification for Facebook and YouTube

YouTube example. The backstack data structure is shown on line 2. A new element is pushed to or
popped from the backstack at the beginning or end of a state machine, respectively (lines 14 and 26),
while currentState always point to the top of this stack for each device.

Each sequence of transitions generated by SPIN is translated into a UiAutomatorTestCase subclass,
where each transition is implemented by a method. This class simulates the actions performed by the
user, such as pressing buttons or swiping. The code shown in Listing 5 shows part of a test case obtained
from the model of Figure 4, in particular a user adding a link to a YouTube video in a Facebook comment,
and later watching that video on the YouTube application. The file is compiled into a .dex (ANDROID

application binary) file, and then deployed into a ANDROID device and executed using the adb tool.
Table 1 provides some quantitative results of the number of test cases generated and the computa-

tional effort required, for several scenarios, averaged over three runs. Device 219dcac4 was assigned
only the Facebook application, while device 219dcac41 was assigned both, although in both cases other
modeled applications may be reached from the assigned ones. The fourth column declares the maximum
depth allowed for the test case transitions generated for a device. The fifth column represents the total
time spent to generate the test cases from the XML models. The last three columns are stats taken from
the SPIN execution, namely the number of SPIN states generated, the size of each state, and the total
memory spent, respectively. These results show how adding the YouTube application, which is fairly
isolated, has little impact in the results (rows 3 and 4 of data).

6 Comparison with related work

There are other proposals to apply model-based testing to ANDROID applications. Some of them consider
that the testing process starts without a precise model of the expected behavior of the applications and

Espada, Gallardo, Salmerón & Merino 19

1 public class TestDevice1 extends UiAutomatorTestCase {

2 // Transition 2 previous S0 next S0 on view HomeView

3 public void TestFacebookComment2 () throws UiObjectNotFoundException {

4 UiObject control = new UiObject(new UiSelector ().

className("android.widget.TextView").index (1).textContains("Comment"));

5 control.click ();

6 }

7 // Transition 4: previous S0 next S0 on view HomeView

8 public void TestFacebookclicYouTubeLink27 () throws UiObjectNotFoundException {

9 UiObject control = new UiObject(new

UiSelector ().className("android.view.View").index (3));

10 control.click ();

11 }

12 // Transition 1: previous next Y0 on view MovieView

13 public void TestYouTubeplaypause28 () throws UiObjectNotFoundException {

14 UiObject control = new UiObject(new

UiSelector ().className("android.view.View").index (4));

15 control.click ();

16 }

17 }

Listing 5: Generated UiAutomatorTestCase

Devices Configuration Results
219dcac4 219dcac41 Backstack Transitions # Test Cases Time (s) # States State Size (B) Memory (MB)

X 4 20 5641 1.0 307234 84 156.8
X 4 26 111317 9.0 6063398 92 728.6

X 4 20 5660 1.0 307493 84 156.8
X 4 26 111342 9.0 6063735 92 728.6

X X 4 10 1872 7.0 4039337 100 560.3
X X 4 12 12180 52.3 28972472 108 3445.2

Table 1: Test case generation results

they focus on techniques to obtain such model. MobiGUITAR framework [5] automatically construct
a state machine of one application by executing events in the running application and recording a tree
with fireable events for each new state. The authors use a ”breadth-first” traversal of the apps GUI for
open source applications. As far as they are not considering any knowledge on the way of using the
application but they are making an exhaustive execution, they need some criteria to assume whether
some states are equivalent to prevent state explosion. The Swift-Hand technique proposed in [8] employs
machine learning to construct an approximated model of the application during the testing process. Their
aim is to cover as much behavior as possible, making the execution to enter in unexplored parts of the
state space. In our method, we separate test generation from testing and the states in our high-level state
machines are limited and differentiated by design. So our models are more compact, and for instance,
compared with MobiGUITAR we do not need extra work to remove unrealistic test cases. In addition,
our approach allows to generate test cases for several applications that interact using ANDROID intents,
while the complexity of the runtime based modeling process for MobiGUITAR and Swift-Hand makes
them more suitable for single applications.

Like in our proposal, other works also consider the existence of a formal specification of the appli-
cations to start the test generation.In [17] the authors describe how to follow a property-driven method
build the models in Alloy, a formal language based on high order logic. In their proposal the role of the
model checker in our approach is done they the Alloy analyzer, that generates positive (expected) and
negative (undesired) test cases. Like in our approach, they use XML based transformations to translate

20 Using Model Checking to Generate Test Cases for Android Applications

the test cases to some executable form in order to activate the applications under test. Apart from the
inside technologies (model checking vs constraint solver), the main difference in both proposals is the
way to obtain the refined executable model. The Alloy specification in [17] is constructed manually,
while the PROMELA specification in our work is done automatically from the high level design of the
view state machines. We still need to work in the same case study to get a quantitative comparison on
the human and computational effort required in both approaches.

There are other model-based testing tools for Android which are not focused on models that consider
the user inputs. For instance, the tool APSET [23] considers manually constructed formal models of
vulnerability patterns to generate test cases for ANDROID applications. Test generation is implemented
with an ad-hoc algorithm that also considers the compiled code of the application and the configuration
files in the ANDROID system.

7 Conclusions and Future Work

ANDROID systems have a complex architecture designed to support the concurrent execution of appli-
cations on devices with limited resources. Here we have presented a model-based testing approach for
generating test cases for ANDROID applications, which takes into account the way in which these appli-
cations interact with the user and with each other. We model the expected user behavior by composing
state machines, and then explore this model exhaustively with SPIN to obtain all possible user behaviors,
which correspond to test cases. These test cases are then executed in the device simulating the user
inputs. In contrast with other approaches that generate random input events, our approach produces re-
alistic user behaviors. Although our tool is currently geared towards ANDROID, the same principles can
be applied to analyze applications in other mobile platforms, such as IOS and WINDOWS MOBILE.

The next step of our work will be to connect the generated test cases with a runtime verification
monitor DRAGONFLY [14, 13]. In addition, we are working in adding more runtime information, like
energy consumption, to perform richer analysis.

References

[1] Android developers. Http://developer.android.com/.

[2] DroidPilot. Http://droidpilot.wordpress.com/.

[3] IBM - Software - Rational Rhapsody family. Http://www-01.ibm.com/software/awdtools/rhapsody/.

[4] Robotium. Https://code.google.com/p/robotium/.

[5] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Ta & Atif Memon (2014): Mobi-
GUITAR – A Tool for Automated Model-Based Testing of Mobile Apps. IEEE Software 99(PrePrints), p. 1,
doi:10.1109/MS.2014.55.

[6] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khurshid, Mike Lowry,
Corina Pasareanu, Grigore Rosu, Koushik Sen, Willem Visser & Rich Washington (2005): Combin-
ing Test Case Generation and Runtime Verification. Theor. Comput. Sci. 336(2-3), pp. 209–234,
doi:10.1016/j.tcs.2004.11.007.

[7] Pedro de la Cámara, J. Rául Castro, Marı́a del Mar Gallardo & Pedro Merino (2010): Verification support
for ARINC-653-based avionics software. Software Testing Verification & Reliability 21(4), pp. 267–298,
doi:10.1002/stvr.422.

[8] Wontae Choi, George Necula & Koushik Sen (2013): Guided GUI Testing of Android Apps with Minimal
Restart and Approximate Learning. SIGPLAN Not. 48(10), pp. 623–640, doi:10.1145/2544173.2509552.

http://dx.doi.org/10.1109/MS.2014.55
http://dx.doi.org/10.1016/j.tcs.2004.11.007
http://dx.doi.org/10.1002/stvr.422
http://dx.doi.org/10.1145/2544173.2509552

Espada, Gallardo, Salmerón & Merino 21

[9] Edmund M. Clarke, Jr., Orna Grumberg & Doron A. Peled (1999): Model Checking. MIT Press, Cambridge,
USA.

[10] Pedro de la Cámara, Marı́a del Mar Gallardo, Pedro Merino & David Sanán (2009): Checking the reliability
of socket based communication software. Intl. Journal on Software Tools for Technology Transfer 11(5), pp.
359–374, doi:10.1007/s10009-009-0112-7.

[11] M.B. Dwyer, Robby, O. Tkachuk & W. Visser (2004): Analyzing interaction orderings with model check-
ing. In: Automated Software Engineering, 2004. Proceedings. 19th Intl. Conference on, pp. 154–163,
doi:10.1109/ASE.2004.1342733.

[12] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel & Anmol N.
Sheth (2010): TaintDroid: An Information-flow Tracking System for Realtime Privacy Monitoring on Smart-
phones. In: Proceedings of the 9th USENIX OSDI, OSDI’10, USENIX Association, Berkeley, CA, USA, pp.
1–6, doi:10.1145/2494522. Available at http://dl.acm.org/citation.cfm?id=1924943.1924971.

[13] Ana Rosario Espada, Marı́a-del-Mar Gallardo & Damián Adalid (2013): DRAGONFLY : Encapsulating
Android for Instrumentation. In: Proceedings of the XIII PROLE13.

[14] Ana Rosario Espada, Marı́a-del-Mar Gallardo & Damián Adalid (2013): A Runtime Verification Framework
for android Applications. In: Proceedings of XXI JCSD.

[15] Gerard J. Holzmann (2003): The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Professional.

[16] Cuixiong Hu & Iulian Neamtiu (2011): Automating GUI Testing for Android Applications. In: Pro-
ceedings of the 6th International Workshop on AST, AST ’11, ACM, New York, NY, USA, pp. 77–83,
doi:10.1145/1982595.1982612.

[17] Yiming Jing, Gail-Joon Ahn & Hongxin Hu (2012): Model-Based Conformance Testing for Android. In:
Advances in Information and Computer Security - 7th International Workshop on Security, IWSEC 2012,
Fukuoka, Japan, November 7-9, 2012. Proceedings, pp. 1–18, doi:10.1007/978-3-642-34117-5 1.

[18] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia & Lujo Bauer (2014): Android Taint Flow Analysis
for App Sets. In: Proceedings of the 3rd ACM SIGPLAN International Workshop, SOAP ’14, ACM, New
York, NY, USA, pp. 1–6, doi:10.1145/2614628.2614633.

[19] Yepang Liu & Chang Xu (2013): VeriDroid: Automating Android application verification. In: Proceedings
Middleware 2013 Doctoral Symposium, ACM, doi:10.1145/2541534.2541594.

[20] Aravind Machiry, Rohan Tahiliani & Mayur Naik (2013): Dynodroid: An Input Generation System for An-
droid Apps. In: Proceedings of the 2013 ESEC/FSE, ESEC/FSE 2013, ACM, New York, NY, USA, pp.
224–234, doi:10.1145/2491411.2491450.

[21] Peter Mehlitz, Oksana Tkachuk & Mateusz Ujma (2011): JPF-AWT: Model checking GUI applications. 2011
26th IEEE/ACM International Conference ASE 2011 0, pp. 584–587, doi:10.1109/ASE.2011.6100131.

[22] Heila van der Merwe, Brink van der Merwe & Willem Visser (2012): Verifying Android Applications Using
Java PathFinder. SIGSOFT Softw. Eng. Notes 37(6), pp. 1–5, doi:10.1145/2382756.2382797.

[23] Sébastien Salva & StassiaR. Zafimiharisoa (2014): APSET, an Android aPplication SEcurity Testing tool for
detecting intent-based vulnerabilities. International Journal on Software Tools for Technology Transfer, pp.
1–21, doi:10.1007/s10009-014-0303-8.

[24] Tommi Takala, Mika Katara & Julian Harty (2011): Experiences of System-Level Model-Based GUI Testing
of an Android Application. In: Proceedings of the 2011 Fourth IEEE ICST, ICST ’11, IEEE Computer
Society, Washington, DC, USA, pp. 377–386, doi:10.1109/ICST.2011.11.

[25] Mark Utting & Bruno Legeard (2007): Practical Model-Based Testing: A Tools Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

[26] Hui Ye, Shaoyin Cheng, Lanbo Zhang & Fan Jiang (2013): DroidFuzzer: Fuzzing the Android Apps with
Intent-Filter Tag. In: Proceedings 11th International Conference on Advances in MoMM2013, ACM,
doi:10.1145/2536853.2536881.

http://dx.doi.org/10.1007/s10009-009-0112-7
http://dx.doi.org/10.1109/ASE.2004.1342733
http://dx.doi.org/10.1145/2494522
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dx.doi.org/10.1145/1982595.1982612
http://dx.doi.org/10.1007/978-3-642-34117-5_1
http://dx.doi.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2541534.2541594
http://dx.doi.org/10.1145/2491411.2491450
http://dx.doi.org/10.1109/ASE.2011.6100131
http://dx.doi.org/10.1145/2382756.2382797
http://dx.doi.org/10.1007/s10009-014-0303-8
http://dx.doi.org/10.1109/ICST.2011.11
http://dx.doi.org/10.1145/2536853.2536881

	1 Introduction
	2 Model checking for test case generation
	3 Architecture of the platform
	4 Formal Description of models
	4.1 View state machines
	4.2 Composition of view state machines
	4.2.1 Composing several devices

	5 Case Study
	5.1 Modeling
	5.2 Test case generation

	6 Comparison with related work
	7 Conclusions and Future Work

